Những câu hỏi liên quan
LA
Xem chi tiết
H24
Xem chi tiết
NM
14 tháng 10 2021 lúc 16:49

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

 

 

Bình luận (0)
NM
14 tháng 10 2021 lúc 16:54

c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)

Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Bình luận (0)
HN
Xem chi tiết
NT
25 tháng 8 2018 lúc 14:05

Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k  =>\(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có: \(\frac{a+b}{a-b}\)=\(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}\)=\(\frac{k+1}{k-1}\)(1)

         \(\frac{c+d}{c-d}\)=\(\frac{dk+d}{dk-d}\)=\(\frac{d\left(k+1\right)}{d\left(k-1\right)}\)=\(\frac{d+1}{d-1}\)(2)

Từ (1),(2)  =>\(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)

Bình luận (0)
NT
25 tháng 8 2018 lúc 14:07

Ý mình là nhầm, cậu đổi dấu giùm mình nha

Bình luận (0)
NT
Xem chi tiết
KS
Xem chi tiết
TD
3 tháng 8 2017 lúc 17:22

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
NQ
Xem chi tiết
HA
30 tháng 8 2016 lúc 14:04

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)

Th1:a+b+c+d=0=>\(\frac{a+b+c+d}{a+b+c+d}=\frac{0}{a+b+c+d}=0suyra\frac{a+b}{b+c}=\frac{c+d}{d+a}=0\)

Th2:a+b+c+d khác 0=>\(\frac{a+b+c+d}{a+b+c+d}=1\)suy ra\(\frac{a+b}{b+a}=\frac{c+d}{d+a}=1\)=>(a+b)(d+a)=(b+a)(c+d)=>a+d=c+d<=>a=c

Vậy a+b+c+d=0 hoặc a=c

Bình luận (0)
H24
7 tháng 3 2020 lúc 18:26

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
HS
Xem chi tiết
TT
22 tháng 4 2018 lúc 16:40

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

Bình luận (0)
TT
22 tháng 4 2018 lúc 16:48

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)

Bình luận (0)
PT
Xem chi tiết
LC
4 tháng 8 2015 lúc 20:29

Áp dụng tính chất tỉ lệ thức, ta có:

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
LC
4 tháng 8 2015 lúc 20:32

Áp dụng tính chất tỉ lệ thức, ta có:

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)

=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=>\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
BH
25 tháng 9 2016 lúc 10:30

Để a/b=c/d thì

a=c và b=d

Ta có: Vì a=c và b=d

=>a+b=c+d

=>a-b=c-d

Vậy a+c/a-b=c=d/c-d

Bình luận (0)
NP
Xem chi tiết
VT
19 tháng 8 2016 lúc 9:13

Áp dụng tính chất tỉ lệ thức , ta có : 

  \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

 \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
VL
Xem chi tiết
H24
13 tháng 5 2016 lúc 16:23

đặt x/2=y/5=k

=> x=2k, y=5k

ta có: 5kx2k=10

=> 10k^2=10

=> k^2=1

=> k=±1

với k=1=> x=2x1=2          ;     y=1x5=5

với k=-1=> x=-1x2=-2       ;    y=-1x5=-5

Bình luận (0)
TN
13 tháng 5 2016 lúc 16:26

\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)

=>5x-2y=0

=>-(2y-5x)=0

=>2y-5x=0 (1)

xy=10 (2)

=>ta có:\(\int^{2y-5x=0}_{xy=10}\)

giải ra ta đc:x=±2;y=±5

Bình luận (0)