Những câu hỏi liên quan
KM
Xem chi tiết
LT
21 tháng 1 2017 lúc 21:11

a là số âm

b là số dương

c là số 0

tiick nha

Bình luận (0)
PC
Xem chi tiết
TL
10 tháng 11 2015 lúc 21:20

Nếu y = 0 => |x| = 0 => x = 0 (Không xảy ra)

Nếu z = 0 => |x| = y> 0 => y dương mà z = 0 nên x là số âm

Nếu x = 0 => y3 = y2z => y3 : y= z => y = z => y; z cùng dấu (không xảy ra)

Vậy z = 0; x là số âm; y là số dương

Bình luận (0)
BM
Xem chi tiết
HK
Xem chi tiết
H9
15 tháng 6 2023 lúc 18:21

TH1: a là dương; b là số âm; c là 0

Ta có: \(a^2>0\)

\(\Rightarrow b^5-b^4c=b^5-b^4.0=b^5-0=b^5>0\)

\(\Rightarrow a^2=b^5\) (vô lí) 

TH2: a là 1 số âm, b là số dương, c là số 0

Ta có: \(a^2>0\)

\(\Rightarrow b^5-b^4c=b^5>0\)

\(\Rightarrow a^2=b^5\) (thỏa mãn)

Vậy trong 3 số a là số âm, b là số dương, c là số 0

Bình luận (0)
DK
15 tháng 6 2023 lúc 18:29

cc

Bình luận (0)
 YangSu đã xóa
DK
15 tháng 6 2023 lúc 18:29

TH1: a là dương; b là số âm; c là 0

Ta có: �2>0

⇒�5−�4�=�5−�4.0=�5−0=�5>0

⇒�2=�5 (vô lí) 

TH2: a là 1 số âm, b là số dương, c là số 0

Ta có: �2>0

⇒�5−�4�=�5>0

⇒�2=�5 (thỏa mãn)

Vậy trong 3 số a là số âm, b là số dương, c là số 0

 Đúng(0)
Bình luận (0)
ND
Xem chi tiết
MA
9 tháng 5 2019 lúc 10:43

tuy ơi tao có rồi

Bình luận (0)
LN
9 tháng 5 2019 lúc 10:44

giả sử x =0  khi đó y(z-0)=0      nên y=0 hoặc z=0 (trái vs giả thiết )

Giả sử y=0  khi đó x3=0  ( trái với giả thiết ) 

Vậy z=0 

Khi z=0 ta có x3=y(-x)

              <=>  x2=-y 

vì x2 \(\ge0\)với mọi x  suy ra y\(\le\)0 nên y là số âm 

vậy còn lại x là số dương

Bình luận (0)
SS
9 tháng 5 2019 lúc 11:07

Ta có: x^3= y(z-x) 

để đẳng thức trên có nghĩa => x,y khác 0=> z=0

TH1: x>0 ; y<0

x^3= -yx

x^3 > 0(*)

-yx > 0 tại y<0(**)

từ (*)(**) => thỏa mãn điều kiện

TH2: x<0; y>0

=> x^3<0; -xy> 0 vô lí

Vậy z=0; x >0 và y<0

 

Bình luận (0)
VL
Xem chi tiết
H24
Xem chi tiết
NH
4 tháng 9 2020 lúc 15:45

Ta có một số trường hợp sau :

+) Trường hợp 1 : a là số dương , b là số âm , c = 0  , ta có :\(\hept{\begin{cases}\left|a\right|=a>0\\b^5-b^4c=b^5< 0\end{cases}}\)

Vì vậy ta có : \(a=b^5\)( vô lí )

+) Trường hợp 2 :a là 1 số âm , b là số dương, c = 0 , ta có : \(\hept{\begin{cases}\left|a\right|=a>0\\b^5-b^4c=b^5>0\end{cases}}\)

Vì vậy ta có : \(a=b^5\)( Thỏa mãn )

Còn lại bạn tự xét trường hợp nha 

Bình luận (0)
 Khách vãng lai đã xóa
DP
Xem chi tiết
LP
17 tháng 6 2023 lúc 16:28

Gọi 16 số đó là \(p_1,p_2,...,p_{16}\) 

Theo đề bài, ta có \(p_1+p_2+p_3>0\)\(p_4+p_5+p_6>0\)\(p_7+p_8+p_9>0\)\(p_{10}+p_{11}+p_{12}>0\) và \(p_{13}+p_{14}+p_{15}>0\). Do đó \(p_1+p_2+...+p_{14}+p_{15}>0\).

Tương tự, ta có \(p_1+p_2+...+p_{14}+p_{16}>0\)

...

\(p_1+p_3+...+p_{15}+p_{16}>0\)

\(p_2+p_3+...+p_{15}+p_{16}>0\)

Cộng theo vế 16 bất đẳng thức tìm được, ta có \(15\left(p_1+p_2+...+p_{16}\right)>0\) \(\Leftrightarrow p_1+p_2+...+p_{16}>0\) (đpcm)

Bình luận (0)
CL
17 tháng 6 2023 lúc 15:20

Để chứng minh rằng tổng của 16 số hữu tỷ khác nhau và khác 0 là số dương, ta sẽ sử dụng phản chứng (proof by contradiction).

Giả sử tổng của 16 số đó không là số dương. Tức là tổng của 16 số đó là số không hoặc số âm.

Đặt tổng của 16 số là S.

Vì 16 số hữu tỷ khác nhau và khác 0, nên ta có thể chia chúng thành 8 cặp số đối xứng: (a₁, a₂), (a₃, a₄), (a₅, a₆), ..., (a₁₅, a₁₆).

Tổng của mỗi cặp số đối xứng là dương vì theo điều kiện đề bài, tổng của 3 số bất kỳ là số dương.

Vậy ta có: S = (a₁ + a₂) + (a₃ + a₄) + (a₅ + a₆) + ... + (a₁₅ + a₁₆).

Giả sử tổng của 16 số đó không là số dương, tức là S ≤ 0.

Vì mỗi cặp số đối xứng có tổng dương, nên ta không thể có trường hợp nào mà S ≤ 0.

Do đó, giả định ban đầu là sai.

Vậy, tổng của 16 số hữu tỷ khác nhau và khác 0 là số dương.

Bình luận (0)
NT
Xem chi tiết
SK
Xem chi tiết
PA
10 tháng 12 2014 lúc 20:54

1) ta có 1 = -1.(-1-0)

=> a là số nguyên dương vì = 1

=> b là số nguyên âm vì = -1

=> c là số không vì = 0

Bình luận (0)