Những câu hỏi liên quan
H24
Xem chi tiết
NL
1 tháng 11 2021 lúc 14:04

a.

\(y'=\dfrac{\left(1+\sqrt{3x-1}\right)'}{1+\sqrt{3x-1}}=\dfrac{3}{2\left(1+\sqrt{3x-1}\right)\sqrt{3x-1}}\)

b.

\(y'=\dfrac{\left(2sin^2x-1\right)'}{\left(2sin^2x-1\right).ln10}=\dfrac{2sin2x}{\left(2sin^2x-1\right)ln10}\)

c.

\(y'=\left(3x^2+3\right)3^{x^3+3x+1}.e^x.ln3+3^{x^3+3x+1}.e^x\)

Bình luận (0)
H24
Xem chi tiết
HH
6 tháng 4 2021 lúc 13:54

a/ \(y=\left(x^3-3x\right)^{\dfrac{3}{2}}\Rightarrow y'=\dfrac{3}{2}\left(x^3-3x\right)^{\dfrac{1}{2}}\left(x^3-3x\right)'=\dfrac{3}{2}\left(3x^2-3\right)\sqrt{x^3-3x}\)

b/ \(y'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\sqrt{x^3+1}-x^2+2\right)'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\dfrac{3x^2}{\sqrt{x^3+1}}-2x\right)\)c/ 

\(y'=14\left(x^6+2x-3\right)^6\left(x^6+2x-3\right)'=14\left(x^6+2x-3\right)^6\left(6x^5+2\right)\)

d/ \(y=\left(x^3-1\right)^{-\dfrac{5}{2}}\Rightarrow y'=-\dfrac{5}{2}\left(x^3-1\right)^{-\dfrac{7}{2}}\left(x^3-1\right)'=-\dfrac{15x^2}{2\sqrt{\left(x^3-1\right)^7}}\)

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:09

a) \(g'\left( x \right) = y' = {\left( {2x + \frac{\pi }{4}} \right)^,}.\cos \left( {2x + \frac{\pi }{4}} \right) = 2\cos \left( {2x + \frac{\pi }{4}} \right)\)

b) \(g'\left( x \right) =  - 2{\left( {2x + \frac{\pi }{4}} \right)^,}.\sin \left( {2x + \frac{\pi }{4}} \right) =  - 4\sin \left( {2x + \frac{\pi }{4}} \right)\)

Bình luận (0)
AN
Xem chi tiết
H24
Xem chi tiết
HM
24 tháng 8 2023 lúc 10:28

\(a,y'=\left[\left(2x-3\right)^{10}\right]'\\ =10\left(2x-3\right)^9\left(2x-3\right)'\\ =20\left(2x-3\right)^9\\ b,y'=\left(\sqrt{1-x^2}\right)'\\ =\dfrac{\left(1-x^2\right)'}{2\sqrt{1-x^2}}\\ =-\dfrac{2x}{2\sqrt{1-x^2}}\\ =-\dfrac{x}{\sqrt{1-x^2}}\)

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 8 2023 lúc 20:01

a: y=ln(x+1)

=>\(y'=\dfrac{1}{x+1}\)

=>\(y''=\dfrac{1'\left(x+1\right)-1\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{-1}{\left(x+1\right)^2}\)

b: y=tan 2x

=>\(y'=\dfrac{2}{cos^22x}\)

=>\(y''=\left(\dfrac{2}{cos^22x}\right)'=\dfrac{-2\cdot cos^22x'}{cos^42x}=\dfrac{-2\cdot2\cdot cos2x\left(cos2x\right)'}{cos^42x}\)

\(=\dfrac{4\cdot2\cdot sin2x}{cos^32x}=\dfrac{8\cdot sin2x}{cos^32x}\)

Bình luận (0)
TD
Xem chi tiết
TN
20 tháng 4 2022 lúc 15:26

https://drive.google.com/file/d/14Q-YI3szy-rePnIHWGD35RKCWiCXCT6k/view?usp=sharing

Bình luận (0)
NP
20 tháng 4 2022 lúc 15:55

loading...  

Bình luận (0)
VU
20 tháng 4 2022 lúc 16:35

Võ Ngọc Tú Uyênloading...  

Bình luận (0)
H24
Xem chi tiết
NT
14 tháng 8 2023 lúc 1:47

a: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)

\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)

\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)

\(=5x^4+8x^3-9x^2-12x\)

b: y=1/-2x+5 

=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)

c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)

d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)

\(=cos^2x-sin^2x=cos2x\)

e: \(y=x\cdot e^x\)

=>\(y'=e^x+x\cdot e^x\)

f: \(y=ln^2x\)

=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)

Bình luận (0)
H24
Xem chi tiết
BK
17 tháng 8 2023 lúc 21:49

tham khảo:

a)\(y'\left(x\right)=5\left(\dfrac{2x-1}{x+2}\right)^4.\dfrac{\left(x+2\right)\left(2\right)-\left(2x-1\right).1}{\left(x+2\right)^2}\)

\(=\dfrac{10\left(2x-1\right)\left(x+2\right)^3}{\left(x+2\right)^4}=\dfrac{20x-50}{\left(x+2\right)^4}\)

b)\(y'\left(x\right)=\dfrac{2\left(x^2+1\right)-2x\left(2x\right)}{\left(x^2+1\right)^2}\)\(=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\)

c)\(y'\left(x\right)=e^x.2sinxcosx+e^xsin^2x.2cosx\)

\(=2e^xsinx\left(cosx+sinxcosx\right)\)

\(=2e^xsinxcos^2x\)

d)\(y'\left(x\right)=\dfrac{1}{x\sqrt{x}}.\left(+\dfrac{1}{2\sqrt{x}}\right)\)

\(=\dfrac{1}{\sqrt{x}\left(2\sqrt{x}+\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(3\sqrt{x}+2\right)}\)

Bình luận (0)
H24
Xem chi tiết
MP
17 tháng 8 2023 lúc 14:57

\(y'=\left(log_2\left(2x-1\right)\right)'=\dfrac{2}{\left(2x-1\right)ln2}\)

Bình luận (0)