Những câu hỏi liên quan
LB
Xem chi tiết
VK
14 tháng 5 2016 lúc 14:46

\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)

Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)

             \(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\)  \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)

              \(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)

              \(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số

Bình luận (0)
PL
Xem chi tiết
DQ
14 tháng 5 2016 lúc 14:19

a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)

 

b. \(y=\log_3\left(x^2-3x\right)\)

Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)

                                   \(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)

 

c. \(y=\log_{x^2-4x+4}2013\)

Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)

Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)

Bình luận (0)
PB
Xem chi tiết
H24
14 tháng 5 2016 lúc 14:36

a. \(y=\left(3^x-9\right)^{-2}\)

Điều kiện : \(3^x-9\ne0\Leftrightarrow3^x\ne3^2\)

                                  \(\Leftrightarrow x\ne2\)

Vậy tập xác định là \(D=R\backslash\left\{2\right\}\)

 

b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)

Điều kiện : \(\log_{\frac{1}{3}}\left(x-3\right)-1\ge0\Leftrightarrow\log_{\frac{1}{3}}\left(x-3\right)\ge1=\log_{\frac{1}{3}}\frac{1}{3}\)

                                               \(\Leftrightarrow0< x-3\le\frac{1}{3}\)

                                               \(\Leftrightarrow3< x\le\frac{10}{3}\)

Vậy tập xác định \(D=\) (3;\(\frac{10}{3}\)]

 

c. \(y=\sqrt{\log_3\sqrt{x^2-3x+2}+4-x}\)

Điều kiện :

                 \(\log_3\sqrt{x^2-3x+2}+4-x\ge0\Leftrightarrow x^2-3x+2+4-x\ge1\)

                                                                 \(\Leftrightarrow\sqrt{x^2-3x+2}\ge-x-3\)

\(\Leftrightarrow\begin{cases}x-3< 0\\x^2-3x+2\ge0\end{cases}\) hoặc \(\begin{cases}x-3\ge0\\x^2-3x+2\ge\left(x-3\right)^2\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\2\le x< 3\\x\ge3\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\x\ge2\end{array}\right.\)

Vậy tập xác định là : D=(\(-\infty;1\)]\(\cup\) [2;\(+\infty\) )

Bình luận (0)
ND
Xem chi tiết
VN
26 tháng 3 2016 lúc 5:31

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

Bình luận (0)
NK
Xem chi tiết
TN
6 tháng 5 2016 lúc 11:04

Điều kiện xác định L:

\(\begin{cases}0< 2x+1\ne1\\0< 3x+1\ne1\end{cases}\)  \(\Leftrightarrow\begin{cases}x\ge-\frac{1}{3}\\x\ne0\end{cases}\)

Vậy tập xác định : \(D=\)[\(-\frac{1}{3};+\infty\))\\(\left\{0\right\}\)

Bình luận (0)
VC
Xem chi tiết
NB
14 tháng 5 2016 lúc 14:56

Điều kiện :  

                 \(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)

           \(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)

           \(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)

\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)

Vậy tập xác định là D = [-2;-1) U (2;7]

                          

Bình luận (0)
PP
Xem chi tiết
NT
22 tháng 11 2023 lúc 20:01

d: ĐKXĐ: \(x^2-1< >0\)

=>\(x^2\ne1\)

=>\(x\notin\left\{1;-1\right\}\)

Vậy: TXĐ là D=R\{1;-1}

b: ĐKXĐ: \(2-x^2>0\)

=>\(x^2< 2\)

=>\(-\sqrt{2}< x< \sqrt{2}\)

Vậy: TXĐ là \(D=\left(-\sqrt{2};\sqrt{2}\right)\)

a: ĐKXĐ: \(x-1>0\)

=>x>1

Vậy: TXĐ là \(D=\left(1;+\infty\right)\)

c: ĐKXĐ: \(x^2+x-6>0\)

=>\(x^2+3x-2x-6>0\)

=>\(\left(x+3\right)\left(x-2\right)>0\)

TH1: \(\left\{{}\begin{matrix}x+3>0\\x-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\)

=>x>2

TH2: \(\left\{{}\begin{matrix}x+3< 0\\x-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -3\\x< 2\end{matrix}\right.\)

=>x<-3

Vậy: TXĐ là \(D=\left(2;+\infty\right)\cup\left(-\infty;-3\right)\)

e: ĐKXĐ: \(x^2-2>0\)

=>\(x^2>2\)

=>\(\left[{}\begin{matrix}x>\sqrt{2}\\x< -\sqrt{2}\end{matrix}\right.\)

Vậy: TXĐ là \(D=\left(-\infty;-\sqrt{2}\right)\cup\left(\sqrt{2};+\infty\right)\)

f: ĐKXĐ: \(\sqrt{x-1}>0\)

=>x-1>0

=>x>1

Vậy: TXĐ là \(D=\left(1;+\infty\right)\)

g: ĐKXĐ: \(x^2+x-6>0\)

=>\(\left(x+3\right)\left(x-2\right)>0\)

=>\(\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\)

Vậy: TXĐ là \(D=\left(2;+\infty\right)\cup\left(-\infty;-3\right)\)

Bình luận (0)
NM
Xem chi tiết
LY
Xem chi tiết
NL
6 tháng 3 2021 lúc 0:06

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

Bình luận (1)