Giải bpt:
\(x+\frac{2x}{\sqrt{x^2-4}}\ge3\sqrt{5}\)
Giải BPT
\(\frac{\sqrt{-x^2+x+6}}{2x+5}\le\frac{\sqrt{-x^2+x+6}}{x+4}\)
ĐKXĐ: \(-2\le x\le3\)
Do trên \(\left[-2;3\right]\) cả \(2x+5\) và \(x+4\) đều dương nên BPT tương đương:
\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)
giải BPT : a) \(\sqrt{11+x}+\sqrt{1-x}< 2-\frac{x^2}{4}\)
b) \(x+\frac{2x}{\sqrt{x^2-4}}>3\sqrt{5}\)
c) \(\left(x+2\right)\sqrt{4-x^2}=< -2x-8\)
a/ ĐKXĐ: ....
\(VT=\sqrt{11+x}+\sqrt{1-x}\ge\sqrt{11+x+1-x}=\sqrt{12}\)
\(VP=2-\frac{x^2}{4}\le2< \sqrt{12}\)
\(\Rightarrow VP< VT\Rightarrow\) BPT vô nghiệm
b/
ĐKXĐ: ...
- Với \(x\le0\Rightarrow VT\le0< VP\Rightarrow\) BPT vô nghiệm
- Với \(x>0\) \(\Rightarrow x>2\) hai vế đều dương, bình phương:
\(x^2+\frac{4x^2}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}>45\)
\(\Leftrightarrow\frac{x^4}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}-45>0\)
Đặt \(\frac{x^2}{\sqrt{x^2-4}}=t>0\)
\(\Rightarrow t^2+4t-45>0\Rightarrow\left[{}\begin{matrix}t< -9\left(l\right)\\t>5\end{matrix}\right.\)
\(\Rightarrow\frac{x^2}{\sqrt{x^2-4}}>5\Leftrightarrow x^4>25\left(x^2-4\right)\)
\(\Leftrightarrow x^4-25x^2+100>0\Rightarrow\left[{}\begin{matrix}x^2< 5\\x^2>20\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2< x< \sqrt{5}\\x>2\sqrt{5}\end{matrix}\right.\)
c/
ĐKXĐ: \(-2\le x\le2\)
Do \(-2\le x\le2\Rightarrow x+2\ge0\Rightarrow VT\ge0\) \(\forall x\)
Mà \(VP=-2x-8=-2\left(x+2\right)-4\le-4< 0\)
\(\Rightarrow VP< VT\)
Vậy BPT đã cho vô nghiệm
Giải bpt :
\(x+\sqrt{x-1}\ge3+\sqrt{2\left(x^2-5x+8\right)}\)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow4\sqrt{2x^2-10x+16}-4x+12-4\sqrt{x-1}\le0\)
\(\Leftrightarrow4\sqrt{2x^2-10x+16}-5x+9+x+3-4\sqrt{x-1}\le0\)
\(\Leftrightarrow\frac{16\left(2x^2-10x+16\right)-\left(5x-9\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}\le0\)
\(\Leftrightarrow\frac{7\left(x-5\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}\le0\)
\(\Leftrightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
Vậy BPT có nghiệm duy nhất \(x=5\)
Giải bpt
\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}\ge3\)
Đặt \(x^2-3x+3=t>0\)
\(\sqrt{t}+\sqrt{t+3}\ge3\)
\(\Leftrightarrow2t+3+2\sqrt{t^2+3t}\ge9\)
\(\Leftrightarrow\sqrt{t^2+3t}\ge3-t\)
- Với \(t>3\Rightarrow\left\{{}\begin{matrix}VT>0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(t\le3\)
\(\Leftrightarrow t^2+3t\ge t^2-6t+9\Rightarrow t\ge1\)
Vậy nghiệm của BPT là \(t\ge1\Leftrightarrow\sqrt{x^2-3x+3}\ge1\)
\(\Leftrightarrow x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Giải các bất phương trình chứa căn sau:
1. \(\sqrt{x+8}\left(\sqrt{x+3}-\sqrt{x}\right)\ge3\)
2. \(5\sqrt{x}+\frac{5}{2\sqrt{x}}< 2x+\frac{1}{2x}+4\)
3. \(\sqrt{x+3}+\sqrt{x+2}>\sqrt{2x+4}\)
HY VỌNG MỌI NGƯỜI GIÚP MÌNH NHA! CẢM ƠN RẤT NHIỀU!
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow3\sqrt{x+8}\ge3\left(\sqrt{x+3}+\sqrt{x}\right)\)
\(\Leftrightarrow\sqrt{x+8}\ge\sqrt{x+3}+\sqrt{x}\)
\(\Leftrightarrow x+8\ge2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x\ge2\sqrt{x^2+3x}\)
- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm
- Với \(x\le5\) hai vế ko âm, bình phương:
\(x^2-10x+25\ge4x^2+12x\)
\(\Leftrightarrow3x^2+22x-25\le0\Rightarrow-\frac{25}{3}\le x\le1\)
Vậy nghiệm của BPT đã cho là \(0\le x\le1\)
b/ ĐKXĐ: \(x>0\)
\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)< 2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\Rightarrow x+\frac{1}{4x}=t^2-1\)
BPT trở thành:
\(5t< 2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2>0\Rightarrow\left[{}\begin{matrix}t>2\\t< \frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}>2\Leftrightarrow2x-4\sqrt{x}+1>0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}< \frac{2-\sqrt{2}}{2}\\\sqrt{x}>\frac{2+\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0\le x< \frac{3-2\sqrt{2}}{2}\\x>\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge-2\)
\(\Leftrightarrow\sqrt{x+3}>\sqrt{2\left(x+2\right)}-\sqrt{x+2}\)
\(\Leftrightarrow\sqrt{x+3}>\left(\sqrt{2}-1\right)\sqrt{x+2}\)
\(\Leftrightarrow x+3>\left(3-2\sqrt{2}\right)\left(x+2\right)\)
\(\Leftrightarrow\left(2\sqrt{2}-2\right)x>3-4\sqrt{2}\)
\(\Rightarrow x>\frac{3-4\sqrt{2}}{2\sqrt{2}-2}\)
Giải bpt
\(\frac{x+2}{\sqrt{2x+3}-\sqrt{x+1}}\ge\sqrt{2x^2+5x+3}+1\)
giải bpt \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
cho e hỏi là có thể bình phương dc ko ạ
Hai vế đều dương, bình phương thoải mái bạn, có điều hơi lâu
ĐKXĐ: \(x>0\)
\(\Leftrightarrow2\left(2\sqrt{x}+\frac{1}{\sqrt{x}}\right)< \frac{1}{2}\left(4x+\frac{1}{x}\right)+2\)
Đặt \(2\sqrt{x}+\frac{1}{\sqrt{x}}=t\ge2\sqrt{2}\) \(\Rightarrow4x+\frac{1}{x}=t^2-4\)
\(2t< \frac{1}{2}\left(t^2-4\right)+2\Leftrightarrow t^2-4t>0\)
\(\Rightarrow\left[{}\begin{matrix}t< 0\\t>4\end{matrix}\right.\) kết hợp điều kiện t ta được \(t>4\)
\(\Rightarrow2\sqrt{x}+\frac{1}{\sqrt{x}}>4\Leftrightarrow2x+1>4\sqrt{x}\)
\(\Leftrightarrow4x^2-12x+1>0\Rightarrow\left[{}\begin{matrix}x< \frac{3-2\sqrt{2}}{2}\\x>\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
Kết hợp ĐKXĐ ta được nghiệm của BPT đã cho là:
\(\left[{}\begin{matrix}0< x< \frac{3-2\sqrt{2}}{2}\\x>\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
giải bpt sau:
a, x2 -5x+\(\sqrt{x\left(5-x\right)}\) +2<0
b, 2\(\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge0\)
a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)
Bpt trở thành: \(-t^2+t+2< 0\)
<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)
Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)
<=>\(-x^2+5x-4>0\)
<=>\(1< x< 4\)
<=>\(x\in\left(1;4\right)\)
b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định
Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)