Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NT

giải BPT : a) \(\sqrt{11+x}+\sqrt{1-x}< 2-\frac{x^2}{4}\)

b) \(x+\frac{2x}{\sqrt{x^2-4}}>3\sqrt{5}\)

c) \(\left(x+2\right)\sqrt{4-x^2}=< -2x-8\)

NL
14 tháng 3 2020 lúc 17:22

a/ ĐKXĐ: ....

\(VT=\sqrt{11+x}+\sqrt{1-x}\ge\sqrt{11+x+1-x}=\sqrt{12}\)

\(VP=2-\frac{x^2}{4}\le2< \sqrt{12}\)

\(\Rightarrow VP< VT\Rightarrow\) BPT vô nghiệm

b/

ĐKXĐ: ...

- Với \(x\le0\Rightarrow VT\le0< VP\Rightarrow\) BPT vô nghiệm

- Với \(x>0\) \(\Rightarrow x>2\) hai vế đều dương, bình phương:

\(x^2+\frac{4x^2}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}>45\)

\(\Leftrightarrow\frac{x^4}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}-45>0\)

Đặt \(\frac{x^2}{\sqrt{x^2-4}}=t>0\)

\(\Rightarrow t^2+4t-45>0\Rightarrow\left[{}\begin{matrix}t< -9\left(l\right)\\t>5\end{matrix}\right.\)

\(\Rightarrow\frac{x^2}{\sqrt{x^2-4}}>5\Leftrightarrow x^4>25\left(x^2-4\right)\)

\(\Leftrightarrow x^4-25x^2+100>0\Rightarrow\left[{}\begin{matrix}x^2< 5\\x^2>20\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2< x< \sqrt{5}\\x>2\sqrt{5}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
14 tháng 3 2020 lúc 17:25

c/

ĐKXĐ: \(-2\le x\le2\)

Do \(-2\le x\le2\Rightarrow x+2\ge0\Rightarrow VT\ge0\) \(\forall x\)

\(VP=-2x-8=-2\left(x+2\right)-4\le-4< 0\)

\(\Rightarrow VP< VT\)

Vậy BPT đã cho vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TP
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
IH
Xem chi tiết
ML
Xem chi tiết
KR
Xem chi tiết
CX
Xem chi tiết