Những câu hỏi liên quan
SK
Xem chi tiết
DQ
Xem chi tiết
H24
19 tháng 3 2016 lúc 20:58

a) Áp dụng  đồng nhất thức  \(\cos^2x+\sin^2x=1\)

ta có : \(\int\frac{1}{\cos^2x.\sin^2x}dx=\int\frac{\cos^2x+\sin^2x}{\cos^2x.\sin^2x}dx=\int\frac{dx}{\sin^2x}+\int\frac{dx}{\cos^2x}\)

                                   \(=-\cot x+\tan x+C\)

Bình luận (0)
H24
19 tháng 3 2016 lúc 21:03

b) Khai triển biểu thức dưới dấu nguyên hàm ta thu được :

\(\int\left(\tan x+\cot x\right)^2dx=\int\left(\tan^2x+2+\cot^2x\right)dx\)

                                 \(=\int\left[\left(\tan^2x+1\right)+\left(\cot^2x+1\right)\right]dx\)

                                 \(=\int\frac{dx}{\cos^2x}+\int\frac{dx}{\sin^2x}\)

                                 \(=\tan x-\cot x+C\)

Bình luận (0)
H24
19 tháng 3 2016 lúc 21:17

c) \(\int\tan^2xdx=\int\left(\frac{1}{\cos^2x}-1\right)dx=\tan x-x+C\)

 

d) \(\int\left(5^{3x}+\frac{1}{\sin^2\left(2x+1\right)}+\frac{1}{\sqrt[5]{4x-1}}\right)dx=\)

                                                        \(=\int5^{3x}dx+\int\frac{dx}{\sin^2\left(2x+1\right)}+\int\frac{dx}{\sqrt[5]{4x-1}}\)

                                                        \(=\frac{1}{3}\int5^{3x}d\left(3x\right)+\frac{1}{2}\int\frac{d\left(2x+1\right)}{\sin^2\left(2x+1\right)}+\frac{1}{4}\int\left(4x-1\right)^{-\frac{1}{5}}d\left(4x-1\right)\)

                                                        \(=\frac{5^{3x}}{3\ln5}-\frac{1}{2}\cot\left(2x+1\right)+\frac{5}{16}\sqrt[5]{\left(4x-1\right)^4+C}\)

Bình luận (0)
TA
Xem chi tiết
HL
Xem chi tiết
PD
22 tháng 1 2016 lúc 11:46

a) Mẫu số chứa các biểu thức có nghiệm  thực và không có nghiệm thực.

\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\left(1\right)\)

Tay x=1 vào 2 tử, ta có : 2=2A, vậy A=1

Do đó (1) trở thành : 

\(\frac{1\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(B+1\right)x^2+\left(C-B\right)x+1-C}{\left(x-1\right)\left(x^2+1\right)}\)

Đồng nhất hệ số hai tử số, ta có hệ :

\(\begin{cases}B+1=1\\C-B=2\\1-C=-1\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}B=0\\C=2\\A=1\end{cases}\)\(\Rightarrow\)

\(f\left(x\right)=\frac{1}{x-1}+\frac{2}{x^2+1}\)

Vậy :

\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\int\frac{1}{x-1}dx+2\int\frac{1}{x^2+1}=\ln\left|x+1\right|+2J+C\left(2\right)\)

* Tính \(J=\int\frac{1}{x^2+1}dx.\)

Đặt \(\begin{cases}x=\tan t\rightarrow dx=\left(1+\tan^2t\right)dt\\1+x^2=1+\tan^2t\end{cases}\)

Cho nên :

\(\int\frac{1}{x^2+1}dx=\int\frac{1}{1+\tan^2t}\left(1+\tan^2t\right)dt=\int dt=t;do:x=\tan t\Rightarrow t=arc\tan x\)

Do đó, thay tích phân J vào (2), ta có : 

\(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\ln\left|x-1\right|+arc\tan x+C\)

Bình luận (0)
PD
22 tháng 1 2016 lúc 14:54

b) Ta phân tích 

\(f\left(x\right)=\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}+\frac{D}{x+3}\)\(=\frac{A\left(x+3\right)+B\left(x-1\right)\left(x+3\right)+C\left(x-1\right)^2\left(x+3\right)+D\left(x-1\right)^3}{\left(x-1\right)^3\left(x+3\right)}\)

Thay x=1 và x=-3 vào hai tử số, ta được :

\(\begin{cases}x=1\rightarrow2=4A\rightarrow A=\frac{1}{2}\\x=-3\rightarrow10=-64D\rightarrow D=-\frac{5}{32}\end{cases}\)

Thay hai giá trị của A và D vào (*) và đồng nhất hệ số hai tử số, ta cso hệ hai phương trình :

\(\begin{cases}0=C+D\Rightarrow C=-D=\frac{5}{32}\\1=3A-3B+3C-D\Rightarrow B=\frac{3}{8}\end{cases}\)

\(\Rightarrow f\left(x\right)=\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\)

Vậy : 

\(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx=\)\(\left(\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\right)dx\)

\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|x-1\right|-\frac{5}{32}\ln\left|x+3\right|+C\)

\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|\frac{x-1}{x+3}\right|+C\)

Bình luận (0)
TD
8 tháng 6 2017 lúc 18:38

cac cau nghi gi ve cau hoi nay

Bình luận (2)
SK
Xem chi tiết
HB
27 tháng 4 2017 lúc 18:06

Hỏi đáp Toán

Bình luận (0)
H24
Xem chi tiết
NL
5 tháng 3 2022 lúc 17:14

1.

\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)

Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)

\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)

\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)

\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)

Bình luận (0)
NL
5 tháng 3 2022 lúc 17:15

2.

\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)

\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)

\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)

Bình luận (0)
NB
Xem chi tiết
NB
18 tháng 1 2016 lúc 21:43

a)

\(\int\frac{2\left(x_{ }+1\right)}{x^2+2x_{ }-3}dx=\int\frac{2x+2}{x^2+2x-3}dx\)

\(=\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}=ln\left|x^2+2x-3\right|+C\)

Bình luận (0)
NB
18 tháng 1 2016 lúc 21:50

b)\(\int\frac{2\left(x-2\right)dx}{x^2-4x+3}=\int\frac{2x-4dx}{x^2-4x+3}=\int\frac{d\left(x^2-4x+3\right)}{x^2-4x+3}=ln\left|x^2-4x+3\right|+C\)

Bình luận (0)
SC
Xem chi tiết
SC
13 tháng 1 2022 lúc 15:11

Thầy mình bảo bài này trong đề thi không có nên thầy ghi mỗi đáp số thôi :vv Mình mò mãi cũng không biết giải kiểu gì nữa

Bình luận (0)
H24
13 tháng 1 2022 lúc 15:37

:V hảo thầy :V

Bình luận (2)
LN
13 tháng 1 2022 lúc 17:21

undefinedundefined

Bình luận (8)
PL
Xem chi tiết
HH
20 tháng 3 2021 lúc 23:16

Cách này hơi dài chút, nhưng nếu nghĩ ra cách hay hơn mình sẽ đề xuất nhe!

\(=\int\sin^5x.\left(2\sin x\cos x\right)^3.2xdx=16\int x.\sin^8x\cos^3xdx\)

\(\left\{{}\begin{matrix}u=x\\dv=\sin^8x.\cos^3xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\int\sin^8x.\cos^3xdx\end{matrix}\right.\)

\(I_1=\int\sin^8x\cos^3xdx=\int\sin^8x.\cos^2x.\cos xdx=\int\sin^8x.\left(1-\sin^2x\right)\cos xdx\)

\(t=\sin x\Rightarrow dt=\cos xdx\Rightarrow\int\sin^8x\left(1-\sin^2x\right)\cos xdx=\int(t^8-t^{10})dt=\dfrac{1}{9}t^9-\dfrac{1}{11}t^{11}=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\)

\(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\end{matrix}\right.\)

\(\Rightarrow\dfrac{I}{16}=x.\left(\dfrac{1}{9}\sin^9x-11\sin^{11}x\right)-\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx\)

\(I_2=\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx=\dfrac{1}{9}\int\sin^9xdx-\dfrac{1}{11}\int\sin^{11}xdx\)

À thế này là xong rồi còn gì :) Bạn tự làm nốt nhé

 

Bình luận (0)