Cmr : A \(\subset\)B ; B \(\subset\)D Vậy thì : A\(\subset\)D
CMR :nếu \(A\subset BvàB\subset CthìÂ\subset C\)
cái này là hiển nhiên vẽ vòng tròn ra là bt
Cho A , B , C , E sao cho \(A,B,C\subset E\)
CMR : \(C_E\left(A\cap B\right)=C_EA\cup C_EB\)
CMR nếu \(A\subset B\) thì \(A\cap B=A\)
+) Ta chứng minh chiều thuận : A con B => A = A ^ B
- với mọi x thuộc A => x thuộc B (vì A con B ),vậy x vừa thuộc A vừa thuộc B => x thuộc A ^ B
- với mọi x thuộc A ^ B => x thuộc A và x thuộc B => ít nhất thì x thuộc A
vậy A = A ^ B
+ ta chứng minh chiều ngược lại : A = A ^ B => A con B
- với mọi x thuộc A,do A = A ^ B nên x cũng thuộc A ^ B
mà x thuộc A ^ B suy ra x thuộc A và x thuộc B,vậy x cũng thuộc B
Nghĩa là với mọi x thuộc A thì x cũng thuộc B,tức là A con B
Cho A,B,C là ba tập hợp . Mệnh đề nào sau đây là sai?
A. \(A\subset B\Rightarrow A\cap B\subset B\cap C\)
B. \(A\subset B=C\A\subset C\B\)
C. \(A\subset B\Rightarrow A\cup C\subset B\cup C\)
D. \(A\subset B,B\subset C\Rightarrow A\subset C\)
Mệnh đề A sai
Phản ví dụ: vì C bất kì nên \(B\cap C\) có thể bằng rỗng, mà \(A\cap B=A\) nên nếu \(A\ne\varnothing\) thì \(A\cap B\) không phải con của \(B\cap C\)
[1] Cho tập hợp A = { 1; a; b }. Chọn khằng định sai:
A. \(\varnothing\subset A\) B. \(A\subset A\) C. \(1\subset A\) D. \(\left\{a;b\right\}\) \(\subset A\)
Ta có:
\(A=\left\{1;a;b\right\}\)
Xét:
A. \(\varnothing\subset A\) (đúng)
B. \(A\subset A\) (đúng)
C. \(1\subset A\) (sai)
D. \(\left\{a,b\right\}\subset A\) (đúng)
⇒ Chọn C
Những quan hệ nào trong các quan hệ sau là đúng ?
a. \(A\subset A\cup B\)
b. \(A\subset A\cap B\)
c. \(A\cap B\subset A\cup B\)
d. \(A\cup B\subset B\)
e. \(A\cap B\subset A\)
chứng minh rằng nếu A \(\subset\) B ; B \(\subset\) D thì A\(\subset\) D
theo bài ra ta có:
A⊂B
B⊂D
=>A⊂D
tick hộ mik nha!
cái này thì hiển nhiên đúng rồi chứng minh làm gì nữa :)
Chứng minh rằng A\(\subset\)B ,mà B \(\subset\) C vậy A\(\subset\)C
Vì: \(a=b;b=c\Rightarrow a=c\)(tích chất bắt cầu)
\(\Rightarrow A\subset B;B\subset C\Rightarrow A\subset C\)
tíc mình nha
Chứng minh bằng hình vẽ :
Vòng tròn A nằm trong vòng tròn B,vòng tròn B nằm trong vòng tròn C nên vòng tròn A nằm trong vòng tròn C,suy ra đpcm.
Đây là tính chất bắc cầu .
K MÌNH NHA
Trong các mệnh đề sau, mệnh đề nào đúng?
A. \(\varnothing\) = {0}. B. \(\varnothing\) \(\subset\) {0}
C. {0} \(\subset\) \(\varnothing\) D. 0 \(\subset\) \(\varnothing\)