Những câu hỏi liên quan
KS
Xem chi tiết
VH
Xem chi tiết
SG
7 tháng 10 2016 lúc 6:29

Ta có:

\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)

Bình luận (3)
LF
6 tháng 10 2016 lúc 23:18

vt rõ đề đi

Bình luận (0)
DA
Xem chi tiết
TD
Xem chi tiết
MC
17 tháng 8 2019 lúc 9:48

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

Bình luận (1)
CM
Xem chi tiết
NH
22 tháng 9 2019 lúc 17:31

Ta có: \(a_2^2=a_1.a_3\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\) ;  \(a_3^2=a_2.a_4\)\(\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)(1)

Lại có: \(\frac{a_1^3}{a_2^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

Bình luận (0)
H24
Xem chi tiết
OO
Xem chi tiết
OO
31 tháng 12 2015 lúc 8:02

cách làm như thế này có đúng không nhỉ ? nếu đúng thì tích cho mik nhé !

Bình luận (0)
OO
31 tháng 12 2015 lúc 8:06

a2^2= a1.a3            (c )

a3^2=a2.a4             (d) 

từ (c) và (d) suy ra : a1/a2=a2/a3=a3/a4

=> (a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1/a2.a2/a3.a3/a4= a1/a4

mặt khác :(a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1^3/a2^3= a2^3/a3^3=a3^3/a4^3

= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3             

từ đó suy ra : a1/a4= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3   

Bình luận (0)
HP
31 tháng 12 2015 lúc 8:11

cách làm đúng đấy ^_^ 

Bình luận (0)
ND
Xem chi tiết
NT
Xem chi tiết