Ôn tập toán 7

VH

Cho 4 số a1, a2, a3, a4 khác 0 sao cho a2 ^2 = a1.a3 và a3 ^2 =a2.a4 
CMR : (a1^3 + a2^3 + a3^3)/(a2^3 + a3^3 + a4^3 ) = a1/a4

SG
7 tháng 10 2016 lúc 6:29

Ta có:

\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)

Bình luận (3)
LF
6 tháng 10 2016 lúc 23:18

vt rõ đề đi

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NN
Xem chi tiết
PT
Xem chi tiết
HN
Xem chi tiết
TH
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TD
Xem chi tiết