Những câu hỏi liên quan
KG
Xem chi tiết
AH
17 tháng 9 2023 lúc 17:02

Lời giải:

CM $\sqrt{a}+\sqrt{b}> \sqrt{a+b}$

BĐT cần chứng minh tương đương với:

$(\sqrt{a}+\sqrt{b})^2> a+b$

$\Leftrightarrow a+b+2\sqrt{ab}> a+b$
$\Leftrightarrow \sqrt{ab}>0$ (luôn đúng với mọi $a>0, b>0$)

Ta có đpcm

--------------------

CM $|a|+|b|> |a+b|$. Cái này là = rồi chứ không phải > bạn nhé.

Khi $a>0; b>0$ thì $|a|=a; |b|=b\Rightarrow |a|+|b|=a+b$

$|a+b|=a+b$

$\Rightarrow |a|+|b|=|a+b|$

 

Bình luận (0)
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 15:57

a) Xét dãy số \(\left( {{u_n}} \right)\) sao cho \({u_n} < 0\) và \(\lim {u_n} = 0.\) Khi đó \(f\left( {{u_n}} \right) =  - 1\) và \(\lim f\left( {{u_n}} \right) =  - 1.\)

b) Xét dãy số \(\left( {{v_n}} \right)\) sao cho \({v_n} > 0\) và \(\lim {v_n} = 0.\) Khi đó \(f\left( {{v_n}} \right) = 1\) và \(\lim f\left( {{v_n}} \right) = 1.\)

Bình luận (0)
TN
Xem chi tiết
H24
20 tháng 8 2016 lúc 20:51

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)

Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)

\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)

Cộng theo vế của (1);(2)&(3) ta đc:

A\(\le1\)

Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c

 

Bình luận (1)
LP
Xem chi tiết
9B
Xem chi tiết
NA
27 tháng 12 2017 lúc 21:33

từ a+b+c=0 ta đc: 2a +2b + 2c =0

Phá ngoặc ta đc a+b+c+c+a  / abc

=> 2a + 2b+2c / abc

mà 2a +2b +2c =0

nên biểu thức trên bằng 0

k cho mk nha!!

Bình luận (0)
PH
27 tháng 12 2017 lúc 21:39

thánh mới biết!

Bình luận (0)
PC
28 tháng 12 2017 lúc 10:09

Ta có: \(a+b+c=0\Rightarrow2\left(a+b+c\right)=0\)

\(\frac{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}{abc}\)

\(=\frac{2a+2b+2c}{abc}\)

\(=\frac{0}{abc}=0\)

Vậy \(\frac{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}{abc}=0\)

Bình luận (0)
PL
Xem chi tiết
Y
16 tháng 4 2019 lúc 21:41

+ \(c^2+1\ge2c\) \(\forall c\)

\(\Rightarrow a^2\left(c^2+1\right)\ge2a^2c\)

Dấu "=" xảy ra \(\Leftrightarrow c=1\)

+ Tương tự ta có :

\(c^2\left(b^2+1\right)\ge2bc^2\). Dấu "=" xảy ra \(\Leftrightarrow b=1\)

\(b^2\left(a^2+1\right)\ge2ab^2\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)

do đó : \(a^2\left(c^2+1\right)+c^2\left(b^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\left(a^2c+bc^2+ab^2\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Áp dụng bđt AM-GM cho 3 số dương \(a^2c;bc^2;ab^2\) ta có :

\(a^2c+bc^2+ab^2\ge3\sqrt[3]{a^2c\cdot bc^2\cdot ab^2}=3abc\)

Dấu "=" xảy ra \(\Leftrightarrow a^2c=bc^2=ab^2\Leftrightarrow a=b=c\)

Do đó : \(a^2\left(c^2+1\right)+c^2\left(c^2+1\right)+b^2\left(a^2+1\right)\)

\(\ge2\cdot3abc=6abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
MN
16 tháng 4 2019 lúc 21:46

Nghĩ đơn giản ra

VT = a2 + c2a2 + c2 + b2c2 + b2 + a2b2\(6\sqrt[6]{a^6b^6c^6}\) = 6abc

Bình luận (0)
SK
Xem chi tiết
NH
4 tháng 7 2017 lúc 15:34

Bất phương trình bậc nhất một ẩn

Bình luận (0)
MH
Xem chi tiết
NM
27 tháng 10 2021 lúc 21:20

Bài 1:

\(HPT\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\\ \Leftrightarrow a^2+b^2+c^2=0\\ \Leftrightarrow a=b=c=0\left(a^2+b^2+c^2\ge0\right)\\ \Leftrightarrow A=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1+1-1=-1\)

Bài 2: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

Bài 3: Xác định a, b, c để x^3 - ax^2 + bx - c = (x - a) (x-b)(x-c) - Lê Tường Vy

Bình luận (0)
VV
Xem chi tiết
PM
11 tháng 12 2015 lúc 20:22

\(\frac{2ab}{\left(c+a\right)\left(c+b\right)}+\frac{2bc}{\left(a+b\right)\left(a+c\right)}+\frac{2ca}{\left(b+a\right)\left(b+c\right)}\ge\frac{3}{2}\) thì phải

Bình luận (0)
QT
Xem chi tiết
BH
20 tháng 9 2019 lúc 20:28

\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)

Bạn làm tương tự nha

\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)

Bình luận (0)