Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

TN

Cho a>0, b>0 và c>0. Tính giá trị lớn nhất của biểu thức
A = \(\frac{a}{a+\sqrt[]{\left(a+b\right)\left(a+c\right)}}+\frac{b}{b+\sqrt[]{\left(b+c\right)\left(b+a\right)}}+\frac{c}{c+\sqrt[]{\left(c+a\right)\left(c+b\right)}}\)

H24
20 tháng 8 2016 lúc 20:51

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)

Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)

\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)

Cộng theo vế của (1);(2)&(3) ta đc:

A\(\le1\)

Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c

 

Bình luận (1)

Các câu hỏi tương tự
DA
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết
PN
Xem chi tiết
PH
Xem chi tiết
TH
Xem chi tiết
CD
Xem chi tiết