cho tam giác ABC nhọn. cmr cotA+cotB+cotC=AB^2+AC^2+BC^2/4S
cho ▲ABC nhọn. CM: 4SABC.(cotA+cotB+cotC)=AB2+AC2+BC2
Cho \(\Delta ABC\) CMR:\(cotA+cotB+cotC=\dfrac{AB^2+AC^2+BC^2}{4S}\)( với S là diện tích tam giác ABC
Cho tam giác ABC có diện tích là S. BC = a, AC = b, AB = c. G là trọng tâm tam giác. Chứng minh rằng:
a/ \(cotA=\dfrac{b^2+c^2-a^2}{4S}\)
b/ \(cotA+cotB+cotC=\dfrac{a^2+b^2+c^2}{4S}\)
c/ \(GA^2+GB^2+GC^2=\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
d/ \(b^2-c^2=a\left(b.cosC-c.cosB\right)\)
a)Có \(b^2+c^2-a^2=cosA.2bc\)
\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)
\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)
b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\); \(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)
Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)
c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC
Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)
\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)
d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)
\(=b^2-c^2\) (dpcm)
1)Tính
M= sin^4x (1+2cos^2x ) + cos^4x ( 1+2sin^2x )
2) cho ∆ abc nhọn. Chứng minh
CotA + cotB + cotC = AB^2 + AC^2 + BC^2 tất cả phần 4S ( S là diện tích ∆ ABC)
Cota + cotb + cotc = (ab*ab+ac*ac+bc*bc) /(4s)
Với s là diện tích tam giác ABC
cho ▲ABC nhọn. CM: 4.SABC.(cotA+cotB+cotC)=AB2+AC2+BC2
Chứng minh rằng trong tam giác ABC nhọn có:
CotA+CotB+CotC= \(\dfrac{AB^2+AC^2+BC^2}{4\cdot S}\)
giải nhanh dùm nha !!!!!!!!!!!!
cho tam giác ABC nhọn. chứng minh rằng cotA+cotB+cotC <= 3/2
CMR : \(cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)
với a,b,c là các cạnh ký hiệu quy ước ; S là diện tích tam giác