Những câu hỏi liên quan
PB
Xem chi tiết
CT
11 tháng 12 2017 lúc 5:40

Sử dụng hệ thức về cạnh góc vuông và đường cao trong tam giác vuông, tính được BH =4,5cm, CH = 8cm

Bình luận (0)
HT
Xem chi tiết
H24
26 tháng 7 2020 lúc 11:55

A B C H

Xét tam giác vuông AHB và CHA có :

      góc AHB = góc CHA = 90độ 

      góc ABH = góc CAH ( cùng phụ với góc C )

Vậy tam giác AHB đồng dạng tam giác CHA ( g.g )

Suy ra : \(\frac{AH}{HC}=\frac{AB}{CA}\)    ( 1 )

Theo đề bài \(\frac{AB}{AC}=\frac{3}{4}\) và AH = 12cm  ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{12}{HC}=\frac{3}{4}\Rightarrow HC=\frac{12.4}{3}=16\) ( cm )

Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :

\(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{12^2}{16}=9\) ( cm )

Vậy BH = 9cm , HC = 16cm

Học tốt

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
TB
Xem chi tiết
TT
11 tháng 9 2016 lúc 13:26

AB^2 = BH x BC (1) 
AC^2 = HC x BC (2) 

Lấy (1) : (2) => AB^2/AC^2 = BH/HC <=> 9/49 = BH/CH 

Vậy tỉ lệ BH:HC cần tìm là 9:49

Bình luận (0)
B1
30 tháng 7 2017 lúc 21:21

Ta có 
AB^2 = BH x BC (1) 

AC^2 = HC x BC (2) 

Lấy (1) : (2) => AB^2/AC^2 = BH/HC <=> 9/49 = BH/CH 

Vậy tỉ lệ của BH:HC cần tìm là 9:49

cho bài chứng minh đi mấy bài này mk sai lém hihi ^^

Bình luận (0)
H24
30 tháng 7 2017 lúc 21:23

Ta có :

AB^2 = BH x BC                       (1) 

AC^2 = HC x BC                       (2) 

Lấy (1) : (2) => AB^2/AC^2 = BH/HC <=> 9/49 = BH/CH 

Vậy tỉ lệ BH:HC cần tìm là 9:49

Bình luận (0)
PH
Xem chi tiết
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)
PB
Xem chi tiết
CT
1 tháng 7 2019 lúc 7:01

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m

Bình luận (0)
HA
Xem chi tiết
NT
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
HM
Xem chi tiết
AH
11 tháng 7 2023 lúc 23:32

Lời giải:

Do $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$

Áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{144}=\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{25}{144a^2}$

$\Rightarrow a^2=25\Rightarrow a=5$ (do $a>0$)

$\Rightarrow AB=3a=15; AC=4a=20$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

$CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm) - theo định lý Pitago

Bình luận (0)
AH
11 tháng 7 2023 lúc 23:33

Hình vẽ:

loading...

Bình luận (0)
NT
11 tháng 7 2023 lúc 22:52

AB:AC=3/4

=>BH/CH=9/16

=>BH/9=CH/16=k

=>BH=9k; CH=16k

AH^2=BH*HC

=>144k^2=12^2=144

=>k^2=1

=>k=1

=>BH=9cm; CH=16cm

Bình luận (0)