HM

cho tam giác ABC vuông tại A, đường cao AH. cho biết AB:AC = 3:4 và AH =12cm. Tính độ dài các đoạn thẳng BH,CH

AH
11 tháng 7 2023 lúc 23:32

Lời giải:

Do $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$

Áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{144}=\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{25}{144a^2}$

$\Rightarrow a^2=25\Rightarrow a=5$ (do $a>0$)

$\Rightarrow AB=3a=15; AC=4a=20$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

$CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm) - theo định lý Pitago

Bình luận (0)
AH
11 tháng 7 2023 lúc 23:33

Hình vẽ:

loading...

Bình luận (0)
NT
11 tháng 7 2023 lúc 22:52

AB:AC=3/4

=>BH/CH=9/16

=>BH/9=CH/16=k

=>BH=9k; CH=16k

AH^2=BH*HC

=>144k^2=12^2=144

=>k^2=1

=>k=1

=>BH=9cm; CH=16cm

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
DH
Xem chi tiết
PB
Xem chi tiết
AN
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
VG
Xem chi tiết