Rút gọn biểu thức :
(x-y+z)2 + (z-y)2 + 2.(x-y+z).(y-z)
Cho x+y+z=0. Rút gọn biểu thức:
K=\(\dfrac{x^{2}+y^{2}+z^{2}}{(y-z)^{2}+(z-x)^{2}+(x-y)^{2}}\)
Ta có: x+y+z=0
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)
Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)
\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Vậy: \(K=\dfrac{1}{3}\)
\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)
\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)
Rút gọn biểu thức: x - y + z 2 + z - y 2 + 2(x – y + z)(y – z)
x - y + z 2 + z - y 2 + 2(x – y + z)(y – z)
= x - y + z 2 + 2(x – y + z)(y – z) + y - z 2
= x - y + z + y - z 2 = x 2
Rút gọn biểu thức sau: (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2
(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2
= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)
= z2.
Rút gọn biểu thức sau:
(x+y-z)2+(y-z)2+2(x-y+z)(z-y)
\(\left(x+y-z\right)^2+2.\left(x+y-z\right).\left(z-y\right)+\left(y-z\right)^2=\left[\left(x+y-z\right)+\left(z-y\right)\right]^2=x^2\)
Sai đề.
Rút gọn biểu thức:
(x-y+z)2 +(z-y)2 +2(x-y+z)(y-z).
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Rút gọn biểu thức:
( x - y +z )2 + ( z - y )2 +2( x - y + z )( y - z )
hằng đẳng thức nha đổi vị trí tth]s 2 xuoong3 và 3 lên 2 ra rồi tự làm nha
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
= \(\left(x-y+z\right)^2+\left(z-y\right)^2-2\left(x-y+z\right)\left(z-y\right)\)
= \(\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)
= \(\left(x-y+z-z+y\right)^2\)
= \(x^2\)
rút gọn biểu thức:
(x-y+z)2 + (z-y)2 + 2(x-y+z).(y-z)
(x-y+z)2 + (z-y)2 + 2(x-y+z).(y-z)
= (x-y+z)2 + 2(x-y+z)(y-z) + (y-z)2
= (x-y+z+y-z)2
= x2
Rút Gọn Biểu Thức Có sử dụng hàng đẳng thức
(x-y+z)2+(z-y)2+2(x-y+z)(y-z)
,[x-y+z]^2+[z-y]^2+2.[x-y+z][y-z] (x - y + z)² + (z - y)² + 2(x - y + z)(y - z)
= (x - y + z)² + 2(x - y + z)(y - z) + (y - z)²
= (x - y + z + y - z)²
= x²
Ta có:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+2.\left(x-y+z\right).\left(y-z\right)\)
\(=\left(x-y+z\right)^2+2.\left(x-y+z\right).\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Học tốt nhé
\(\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(z-y\right)^2\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2=x^2\)
Cho x , y , z khác 0 và x + y = z =0 . Rút gọn biểu thức : \(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{z^2+x^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
\(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{z^2+x^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
\(=\frac{x^2}{y^2+\left(z-x\right)\left(z+x\right)}+\frac{y^2}{z^2+\left(x-y\right)\left(x+y\right)}+\frac{z^2}{x^2+\left(y-z\right)\left(y+z\right)}\left(1\right)\)
Vì \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}\left(2\right)}\)
Lại vì \(x+y+z=0\Rightarrow\hept{\begin{cases}z-x=-2x-y\\x-y=-2y-z\\y-z=-x-2z\end{cases}\left(3\right)}\)
Thay (2) và (3) vào (1) ta được:
\(A=\frac{x^2}{y^2+y^2+2xy}+\frac{y^2}{z^2+z^2+2yz}+\frac{z^2}{x^2+x^2+2xz}\)
\(=\frac{x^2}{2y\left(x+y\right)}+\frac{y^2}{2z\left(y+z\right)}+\frac{z^2}{2x\left(x+z\right)}\left(4\right)\)
Thay (2) vào (4) ta được:
\(A=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)
\(=\frac{x^3+y^3+z^3}{-2xyz}\)
\(=\frac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{-2xyz}\)
\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xyz}{-2xyz}\)
\(=\frac{-3xyz}{-2xyz}=\frac{3}{2}\)
Vậy ...