Tìm giá trị nhỏ nhất của biểu thức :P =\(\left|x\right|+\left|x+26\right|+\left|x-12\right|\)
Tìm giá trị nhỏ nhất của biểu thức :P =\(\left|x\right|+\left|x+26\right|+\left|x-12\right|\)
Có |x| lớn hơn hoặc bằng 0
|x+26|lớn hơn hoặc bằng 0
|x-12|lớn hơn hoặc bằng 0
suy ra |x|+|x+26|+|x−12| lớn hơn hoặc bằng 0
Giá trị của biểu thức đại số \(\left(x^2-1\right)\left(x^2-2\right)\left(x^2-3\right)...\left(x^2-2013\right)\)tại x=5 là ?
BT8: Tính giá trị của các biểu thức sau:
\(1,\left(2x+3\right)^2-\left(2x-1\right)^2-6x\) tại \(x=201\)
\(2,B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)tại \(x=\dfrac{1}{20}\)
1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8
Khi x=201 thì A=10*201+8=2018
2: B=4x^2+20x+25-4x^2+12=20x+37
Khi x=1/20 thì B=1+37=38
1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)
\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)
\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)
\(A=4\left(4x+2\right)-6x\)
\(A=16x+8-6x\)
\(A=10x+8\)
Thay \(x=201\) vào A ta có:
\(A=10\cdot201+8=2010+8=2018\)
Vậy: ....
2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)
\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)
\(B=4x^2+20x+25-4x^2+36\)
\(B=20x+61\)
Thay \(x=\dfrac{1}{20}\) vào B ta có:
\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)
Vậy: ...
BT6: Tính giá trị của biểu thức
\(1,A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=-5\)
\(2,B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)tại \(x=10,y=-1\)
1, \(A=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(A=5x^3-15x+7x^2-5x^3-7x^2\)
\(A=\left(5x^3-5x^3\right)+\left(7x^2-7x^2\right)-15x\)
\(A=-15x\)
Thay \(x=-5\) vào A ta được:
\(-15\cdot-5=75\)
Vậy: ....
2. \(B=x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(B=x^3-3x+7x^2-5x^3-7x^2\)
\(B=\left(x^3-5x^3\right)+\left(7x^2-7x^2\right)-3x\)
\(B=-4x^3-3x\)
Thay \(x=10,y=-1\) vào B ta được:
\(-4\cdot10^3-3\cdot10=-4\cdot1000-3\cdot10=-4000-30=-4030\)
Vậy: ....
rút gọn và tính giá trị của biểu thức :
\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\) tại \(x=-15\)
Cho đa thức: \(f\left(x\right)=x^5+x^2+1\) có 5 nghiệm là \(x_1,x_2,x_3,x_4,x_5\). Tính giá trị của biểu thức: \(A=q\left(x_1\right).q\left(x_2\right).q\left(x_3\right).q\left(x_4\right).q\left(x_5\right)\) với \(g\left(x\right)=x^2-4\)
Chắc là \(q\left(x\right)=x^2-4????\)
\(f\left(2\right)=2^5+2^2+1=37\) ; \(f\left(-2\right)=-27\)
Do \(f\left(x\right)\) có 5 nghiệm nên f(x) có dạng:
\(f\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)
\(\Rightarrow f\left(2\right)=\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)=37\)
\(f\left(-2\right)=\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\left(-2-x_5\right)=-27\)
\(\Rightarrow\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)=27\)
\(A=\left(x_1^2-4\right)\left(x^2_2-4\right)\left(x_3^2-4\right)\left(x_4^2-4\right)\left(x^2_5-4\right)\)
\(A=-\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\left(2-x_5\right)\left(2+x_1\right)\left(2+x_2\right)\left(2+x_3\right)\left(2+x_4\right)\left(2+x_5\right)\)
\(A=-37.27=-999\)
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
Cho biểu thức \(A=\frac{\left|xy\right|}{xy}-\frac{\left|xy\left(x-y\right)\right|}{xy\left(x-y\right)}\left(\frac{\left|x\right|}{x}-\frac{\left|y\right|}{y}\right)\). CMR giá trị của biểu thức A không phụ thuộc vào giá trị của x, y
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)