7 x \(\dfrac{3}{14}\) - \(\dfrac{1}{14}\) ; \(\dfrac{3}{2}\) + \(\dfrac{7}{4}\) : \(\dfrac{5}{2}\)
giúp mình nhưng làm bài này theo kiểu lớp 4 nha
Tính :
a) 7 x \(\dfrac{3}{14}\) - \(\dfrac{1}{14}\) b) \(\dfrac{3}{2}\) + \(\dfrac{7}{4}\) x \(\dfrac{2}{5}\)
c) \(\dfrac{9}{8}\) : 3 + \(\dfrac{7}{8}\) : 3 d) 2 : \(\dfrac{3}{4}\) - \(\dfrac{5}{8}\) x \(\dfrac{4}{3}\)
`7 xx 3/14 -1/14`
`= 21/14 -1/14`
`= 20/14`
`=10/7`
__
`3/2 + 7/4 xx 2/5`
`= 3/2 + 14/20`
`= 3/2 + 7/10`
`= 15/10 +7/10`
`= 23/10`
__
`9/8 : 3 + 7/3 : 3`
`= 9/8 xx 1/3 + 7/3 xx 1/3`
`=1/3 xx ( 9/8 + 7/3)`
`= 1/3 xx 83/24`
`= 83/72`
__
`2 : 3/4 - 5/8 xx 4/3`
`= 2 xx 4/3 - 5/8 xx 4/3`
`= 4/3 xx ( 2-5/8)`
`= 4/3 xx ( 16/8 -5/8)`
`= 4/3 xx 11/8`
`= 44/24`
`=11/6`
` @ \color{Red}{sushiteam}`
a)\(\dfrac{2}{3}\)x-1=\(\dfrac{3}{2}\)
b)| 5x - \(\dfrac{1}{2}\)| - \(\dfrac{2}{7}\)= 25%
c)\(\dfrac{x-3}{4}\)=\(\dfrac{16}{x-3}\)
d)\(\dfrac{-8}{13}\)+\(\dfrac{7}{17}+\dfrac{21}{31}\)<x≤\(\dfrac{-9}{14}\)+4+\(\dfrac{5}{-14}\)(xϵZ)
a) Ta có: \(\dfrac{2}{3}x-1=\dfrac{3}{2}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{5}{2}\)
hay \(x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
b) Ta có: \(\left|5x-\dfrac{1}{2}\right|-\dfrac{2}{7}=25\%\)
\(\Leftrightarrow\left|5x-\dfrac{1}{2}\right|=\dfrac{1}{4}+\dfrac{2}{7}=\dfrac{15}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{2}=\dfrac{15}{28}\\5x-\dfrac{1}{2}=\dfrac{-15}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{29}{28}\\5x=\dfrac{-1}{28}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{140}\\x=\dfrac{-1}{140}\end{matrix}\right.\)
c) Ta có: \(\dfrac{x-3}{4}=\dfrac{16}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=64\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=8\\x-3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
d) Ta có: \(\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{31}\le x\le\dfrac{-9}{14}+4-\dfrac{5}{14}\)
\(\Leftrightarrow\dfrac{3246}{6851}\le x\le3\)
\(\Leftrightarrow x\in\left\{1;2;3\right\}\)
bài 2: kết quả phép tính \(\dfrac{7}{19}\) x \(\dfrac{1}{3}\) + \(\dfrac{7}{19}\) x \(\dfrac{2}{3}\)=
a. \(\dfrac{14}{21}\)
b.\(\dfrac{21}{19}\)
c.\(\dfrac{14}{57}\)
d.\(\dfrac{7}{19}\)
tìm số tự nhin x bt
a.\(x-\)\(\dfrac{5}{14}=\dfrac{3}{7}-\dfrac{1}{14}\) b.\(\dfrac{2}{9}:x=\dfrac{1}{2}+\dfrac{2}{3}\) c.\(\dfrac{6}{32:x}=\dfrac{12}{16}\)
a: =>x-5/14=6/14-1/14=5/14
=>x=10/14=5/7
b; =>2/9:x=3/6+4/6=7/6
=>x=2/9:7/6=2/9*6/7=4/21
c: =>32:x=8
=>x=4
a
\(x-\dfrac{5}{14}=\dfrac{3}{7}-\dfrac{1}{14}\\ x-\dfrac{5}{14}-\dfrac{3}{7}+\dfrac{1}{14}=0\\ x+\dfrac{1}{14}-\dfrac{5}{14}-\dfrac{6}{14}=0\\ x+\dfrac{1-5-6}{14}=0\\ x-\dfrac{5}{7}=0\\ x=0+\dfrac{5}{7}\\ x=\dfrac{5}{7}\)
b
\(\dfrac{2}{9}:x=\dfrac{1}{2}+\dfrac{2}{3}\\ \dfrac{2}{9}:x=\dfrac{3}{6}+\dfrac{4}{6}\\ \dfrac{2}{9}:x=\dfrac{3+4}{6}=\dfrac{7}{6}\\ x=\dfrac{2}{9}:\dfrac{7}{6}\\ x=\dfrac{2}{9}\times\dfrac{6}{7}=\dfrac{2.3.2}{3.3.7}=\dfrac{4}{21}\)
c
\(\dfrac{6}{32:x}=\dfrac{12}{16}\\ 32:x=6:\dfrac{12}{16}\\ 32:x=6\times\dfrac{16}{12}\\ 32:x=\dfrac{3\times2\times4\times4}{3\times4}\\ 32:x=8\\ x=\dfrac{32}{8}\\ x=4\)
`@` `\text {Answer}`
`\downarrow`
`a,`
`x - 5/14 = 3/7 - 1/14`
`x - 5/14 = 5/14`
`=> x = 5/14 + 5/14`
`=> x = 5/7`
Vậy, `x = 5/7`
`b,`
`2/9 \div x = 1/2 + 2/3`
`2/9 \div x = 7/6`
`x = 2/9 \div 7/6`
`x = 4/21`
Vậy, `x = 4/21`
`c,`
\(\dfrac{6}{32\div x}=\dfrac{12}{16}\)
`6/(32 \div x) = 3/4`
`32 \div x = 6 \div 3/4`
`32 \div x = 8`
` x = 32 \div 8`
`x = 4`
Vậy, `x = 4`
Tính:
a) \(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}\) b) \(\dfrac{2}{9}+\dfrac{5}{9}+\dfrac{8}{9}\)
c) \(\dfrac{13}{14}-\dfrac{5}{14}-\dfrac{1}{14}\) d) \(\dfrac{7}{11}-\dfrac{4}{11}-\dfrac{3}{11}\)
\(\dfrac{7}{13}\) : \(x\) = \(\dfrac{14}{39}\)
\(x\) x \(\dfrac{3}{5}\) = \(\dfrac{14}{15}\)
`#3107`
`7/13 \div x = 14/39`
`=> x = 7/13 \div 14/39`
`=> x = 3/2`
Vậy, `x = 3/2`
________
`x \times 3/5 = 14/15`
`=> x = 14/15 \div 3/5`
`=> x = 14/9`
Vậy, `x=14/9.`
\(\dfrac{7}{13}:x=\dfrac{14}{39}\)
\(x=\dfrac{7}{13}:\dfrac{14}{39}\)
\(x=\dfrac{7}{13}\times\dfrac{39}{14}\)
\(x=\dfrac{3}{2}\)
___
\(x\times\dfrac{3}{5}=\dfrac{14}{15}\)
\(x=\dfrac{14}{15}:\dfrac{3}{5}\)
\(x=\dfrac{14}{15}\times\dfrac{5}{3}\)
\(x=\dfrac{14}{9}\)
` 7/13 : x = 14/39 `
` x = 7/13 : 14/39 `
` x = 7/13 xx 39/14`
` x = 3/2`
Vậy ` x= 3/2.`
` x xx 3/5 = 14/15 `
` x = 14/15 : 3/5 `
` x = 14/15 xx 5/3 `
` x = 14/9`
Vậy ` x = 14/9.`
1) \(\dfrac{4x+7}{x-1}\) = \(\dfrac{12x+5}{3x+4}\)
2) \(\dfrac{x}{x-1}\) - \(\dfrac{2x}{x^{2^{ }}-1}\) = 0
3) \(\dfrac{1}{3-x}\) - \(\dfrac{14}{x^2-9}\) = 1
4) \(\dfrac{x+1}{x-1}\) - \(\dfrac{x-1}{x+1}\) = \(\dfrac{4}{x^2-1}\)
5) x + \(\dfrac{1}{x}\) = x2 + \(\dfrac{1}{x^2}\)
6) \(\dfrac{x-1}{x^2+4}\) = \(\dfrac{x-1}{x+1}\)
1/ \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\) (1)
Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-\dfrac{4}{3}\end{matrix}\right.\)
(1) \(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\\ \Leftrightarrow\left(16+21+12-5\right)x=-5-28\\ \Leftrightarrow44x=-33\\ \Leftrightarrow x=-\dfrac{3}{4}\) (Thỏa mãn)
Vậy \(x=-\dfrac{3}{4}\).
2/ \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\) (2)
Điều kiện: \(x\ne\pm1\)
(2)\(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{x\left(x+1\right)-2x}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow x\left(x+1\right)-2x=0\\ \Leftrightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
So sánh với điều kiện \(\Rightarrow x=0\) là nghiệm của PT.
3/ \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\) (3)
Điều kiện: \(x\ne\pm3\)
(3)\(\Leftrightarrow\dfrac{1}{3-x}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\\ \Leftrightarrow-\dfrac{\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\\ \Leftrightarrow-\left(x+3\right)-14=\left(x-3\right)\left(x+3\right)\\ \Leftrightarrow-x-17=x^2-9\Leftrightarrow x^2+x+8=0\) (Vô nghiệm do \(x^2+x+8>0\qquad\forall x\)).
Vậy PT vô nghiệm.
4/ \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\) (4)
Điều kiện: \(x\ne\pm1\)
(4)\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)=4\Leftrightarrow4x=4\Leftrightarrow x=1\) (loại)
Vậy PT vô nghiệm.
5/ \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\) (5)
Điều kiện: \(x\ne0\)
(5)\(\Leftrightarrow x+\dfrac{1}{x}=\left(x+\dfrac{1}{x}\right)^2-2\)
Đặt \(t=x+\dfrac{1}{x}\), ta có: \(t=t^2-2\\ \Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\end{matrix}\right.\)
Với \(t=2\) ta có: \(x+\dfrac{1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\) (thỏa mãn)
Với \(t=-1\) ta có: \(x+\dfrac{1}{x}=-1\Leftrightarrow x^2+1=-x\Leftrightarrow x^2+x+1=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.
6/ \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\) (6)
Điều kiện: \(x\ne-1\)
(6)\(\Leftrightarrow\dfrac{x-1}{x^2+4}-\dfrac{x-1}{x+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\end{matrix}\right.\)
\(x-1=0\Leftrightarrow x=1\) (Thỏa mãn)
\(\dfrac{1}{x^2+4}-\dfrac{1}{x+1}=0\Leftrightarrow\dfrac{1}{x^2+4}=\dfrac{1}{x+1}\Leftrightarrow x^2+4=x+1\\ \Leftrightarrow x^2-x+3=0\) (vô nghiệm).
Vậy \(x=1\) là nghiệm PT.
1) ĐKXĐ: \(x\notin\left\{1;-\dfrac{4}{3}\right\}\)
Ta có: \(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+16x+21x+28=12x^2+12x+5x-5\)
\(\Leftrightarrow12x^2+37x+28-12x^2-17x+5=0\)
\(\Leftrightarrow20x+33=0\)
\(\Leftrightarrow20x=-33\)
\(\Leftrightarrow x=-\dfrac{33}{20}\)(nhận)
Vậy: \(S=\left\{-\dfrac{33}{20}\right\}\)
2) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
Suy ra: \(x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)
Vậy: S={0}
3) ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{14}{x^2-9}=1\)
\(\Leftrightarrow\dfrac{-1}{x-3}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=1\)
\(\Leftrightarrow\dfrac{-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{14}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(-x-3-14=x^2-9\)
\(\Leftrightarrow x^2-9=-x-17\)
\(\Leftrightarrow x^2-9+x+17=0\)
\(\Leftrightarrow x^2+x+8=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{31}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{31}{4}=0\)(vô lý)
Vậy: \(S=\varnothing\)
4) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
hay x=1(loại)
Vậy: \(S=\varnothing\)
5) ĐKXĐ: \(x\ne0\)
Ta có: \(x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\)
\(\Leftrightarrow\dfrac{x^2+1}{x}=\dfrac{x^4+1}{x^2}\)
\(\Leftrightarrow x^2\left(x^2+1\right)=x\left(x^4+1\right)\)
\(\Leftrightarrow x^4+x^2=x^5+x\)
\(\Leftrightarrow x^5+x-x^4-x^2=0\)
\(\Leftrightarrow x\left(x^4-x^3-x+1\right)=0\)
\(\Leftrightarrow x\left[x^3\left(x-1\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x^3-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^2\cdot\left(x^2+x+1\right)=0\)
mà \(x^2+x+1>0\)
nên \(x\cdot\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x-1=0\end{matrix}\right.\Leftrightarrow x=1\)
Vậy: S={1}
6) ĐKXĐ: \(x\in R\)
Ta có: \(\dfrac{x-1}{x^2+4}=\dfrac{x-1}{x+1}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(x-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1-x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x^2+x-3\right)=0\)
\(\Leftrightarrow-\left(x-1\right)\left(x^2-x+3\right)=0\)
mà \(x^2-x+3>0\)
nên x-1=0
hay x=1(nhận)
Vậy: S={1}
Tìm x
b)\(\left(x-\dfrac{1}{2}\right):\dfrac{1}{3}+\dfrac{5}{7}=9\dfrac{5}{7}\)
c) \(\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{14}{9}.\dfrac{3}{7}\)
b: \(\Leftrightarrow\left(x-\dfrac{1}{2}\right):\dfrac{1}{3}=9+\dfrac{5}{7}-\dfrac{5}{7}=9\)
=>x-1/2=27
hay x=55/2
c: =>1/2x-3/4=42/63=2/3
=>1/2x=17/12
hay x=17/6
\(4+\dfrac{3}{5}\) \(\dfrac{1}{5}+\dfrac{2}{7}\)
\(\dfrac{4}{7}\) x \(\dfrac{14}{3}\) \(\dfrac{5}{6}:\dfrac{4}{9}\)
\(4+\dfrac{3}{5}=\dfrac{20}{5}+\dfrac{3}{5}=\dfrac{23}{5}\)
\(\dfrac{1}{5}+\dfrac{2}{7}=\dfrac{7}{35}+\dfrac{10}{35}=\dfrac{17}{35}\)
\(\dfrac{4}{7}\times\dfrac{14}{3}=\dfrac{56}{21}=\dfrac{8}{3}\)
\(\dfrac{5}{6}:\dfrac{4}{9}=\dfrac{5}{6}\times\dfrac{9}{4}=\dfrac{15}{8}\)
\(4+\dfrac{3}{5}=\dfrac{20}{5}+\dfrac{3}{5}=\dfrac{23}{5}\)
\(\dfrac{1}{5}+\dfrac{2}{7}=\dfrac{7}{35}+\dfrac{5}{35}=\dfrac{12}{35}\)
\(\dfrac{4}{7}\times\dfrac{14}{3}=\dfrac{56}{21}=\dfrac{8}{3}\)
\(\dfrac{5}{6}:\dfrac{4}{9}=\dfrac{5}{6}\times\dfrac{9}{4}=\dfrac{15}{8}\)