Những câu hỏi liên quan
SD
Xem chi tiết
NL
8 tháng 2 2022 lúc 16:11

\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)

\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)

Bình luận (2)
AM
8 tháng 2 2022 lúc 16:14

a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)

b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)

Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)

\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)

Bình luận (0)
SD
8 tháng 2 2022 lúc 16:26

Dạ em cảm ơn thầy và mọi người ạ! 

Bình luận (0)
TM
Xem chi tiết
TT
19 tháng 7 2017 lúc 17:49

\(=\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{sin^2a+cos^2a+2sina\cdot cosa}\) =\(\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{\left(sina+cosa\right)^2}=\frac{sina-cosa}{sina+cosa}=\frac{tana-1}{\tan a+1}\)

Bình luận (0)
ND
Xem chi tiết
ML
9 tháng 8 2015 lúc 21:15

Áp dụng: \(sin^2a+cos^2a=1\)

\(bt=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 6 2023 lúc 22:28

a: \(VT=\dfrac{\left(sina+cosa\right)^3-3\cdot sina\cdot cosa\left(sina+cosa\right)}{sina+cosa}\)

=(sina+cosa)^2-3*sina*cosa

=sin^2a+cos^2a-sina*cosa

=1-sina*cosa=VP

c: VT=(sin^2a+cos^2a)^2-2*sin^2a*cos^2a-(sin^2a+cos^2a)^3+3*sin^2a*cos^2a*(sin^2a+cos^2a)

=1-2sin^2a*cos^2a-1+3*sin^2a*cos^2a

=sin^2a*cos^2a=VP

Bình luận (0)
NT
Xem chi tiết
H24
24 tháng 7 2020 lúc 16:56

a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)

b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)

\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)

\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)

\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)

c)

\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)

\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)

Bình luận (0)
H24
Xem chi tiết
NL
24 tháng 7 2020 lúc 8:40

hỏi tí chớ \(TanB=2\) hay \(Tan\alpha=2\) vậy lolang.

Bình luận (0)
H24
Xem chi tiết
AH
20 tháng 7 2020 lúc 10:08

Những biểu thức này đều không tính toán ra được giá trị cụ thể nên không phù hợp với yêu cầu "tính". Mình nghĩ bạn nên xem xét lại yêu cầu đề.

Bình luận (0)
AH
20 tháng 7 2020 lúc 10:39

Lời giải:

Biểu thức $A$ dạng như vậy là gọn rồi bạn ạ. Biến đổi thêm cũng không có ý nghĩa.

----------

\(B=\sin ^2a+\sin 2a-3\cos ^3a\)

----------

\(C=\frac{\sin ^2a-\sin a\cos a-\cos ^2a}{2\sin a\cos a}=\frac{\sin a}{2\cos a}-\frac{1}{2}-\frac{\cos a}{2\sin a}\)

\(=\frac{\tan a-1-\cot a}{2}\)

Bình luận (0)
H24
Xem chi tiết
H24
15 tháng 7 2019 lúc 20:53
\(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)-\cos^2\alpha\\ =\sin^2\alpha\)

\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)

\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\\ =\left(\sin^2\alpha\right)^2+2\sin^2\alpha\cdot\cos^2\alpha+\left(\cos^2\alpha\right)^2\\ =\left(\sin^2\alpha+\cos^2\alpha\right)^2\\ =1^2=1\)

Bình luận (0)
H24
15 tháng 7 2019 lúc 21:06

\(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\\ =\tan^2\alpha\left(1-\sin^2\alpha\right)\\ =\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\sin^2\alpha\)

\(\cos^2\alpha+\tan^2\alpha\cdot\cos^2\alpha\\ =\cos^2\alpha+\left(\frac{\sin\alpha}{\cos\alpha}\right)^2\cdot\cos^2\alpha\\ =\cos^2\alpha+\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha\\ =\cos^2\alpha+\sin^2\alpha\\ =1\)

\(\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-1\right)\\ =\tan^2\alpha\cdot\left(2\cos^2\alpha+\sin^2\alpha-\sin^2\alpha-\cos^2\alpha\right)\\ =\tan^2\alpha\cdot\cos^2\alpha\\ =\frac{\sin^2\alpha}{\cos^2\alpha}\cdot\cos^2\alpha=\sin^2\alpha\)

Bình luận (0)
NN
Xem chi tiết
NL
18 tháng 5 2021 lúc 22:28

\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cos2a+sin3a}{2cos3a.cos2a+cos3a}=\dfrac{sin3a\left(2cos2a+1\right)}{cos3a\left(2cos2a+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)

\(\dfrac{1+sin4a-cos4a}{1+sin4a+cos4a}=\dfrac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin2a.cos2a+2cos^22a-1}=\dfrac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\dfrac{sin2a}{cos2a}=tan2a\)

\(96\sqrt{3}sin\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=48\sqrt{3}sin\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=24\sqrt{3}sin\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=12\sqrt{3}sin\left(\dfrac{\pi}{6}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=6\sqrt{3}sin\left(\dfrac{\pi}{3}\right)=6\sqrt{3}.\dfrac{\sqrt{3}}{2}=9\)

\(A+B+C=\pi\Rightarrow A+B=\pi-C\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)

\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\)

Bình luận (0)