X4-2X3+2X-1 (PHÂN TÍCH THÀNH NHÂN TỬ DÙM EM NHA BÀ CON THANKS NHÌU)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
phân tích đa thức thành nhân tử
x4-2x3+2x-1
x⁴ - 2x³ + 2x - 1
= (x⁴ - 1) - (2x³ - 2x)
= (x² - 1)(x² + 1) - 2x(x² - 1)
= (x² - 1)(x² + 1 - 2x)
= (x - 1)(x + 1)(x² - 2x + 1)
= (x - 1)(x + 1)(x - 1)²
= (x - 1)³(x + 1)
Phân tích các đa thức sau thành nhân tử: x 4 - 2 x 3 - 2 x 2 - 2 x - 3
x 4 - 2 x 3 - 2 x 2 - 2 x - 3 = ( x 4 − 1 ) − ( 2 x 3 + 2 x 2 ) − ( 2 x + 2 ) = ( x 2 + 1 ) ( x 2 − 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x 2 + 1 ) ( x − 1 ) ( x + 1 ) − 2 x 2 ( x + 1 ) − 2 ( x + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 x 2 – 2 = ( x + 1 ) ( x 2 + 1 ) ( x − 1 ) − 2 ( x 2 + 1 ) = ( x + 1 ) ( x 2 + 1 ) ( x – 1 − 2 ) = ( x + 1 ) ( x 2 + 1 ) ( x − 3 )
x^4 - 2x^3 - 2x^2 - 2x - 3
= x^4 - 1 - 2x^3 - 2x^2 - 2x -2
= ( x - 1 ) ( x + 1 ) ( x^2 + 1 ) - 2x^2 ( x + 1 ) - 2 ( x + 1 )
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2x^2 - 2 ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 - 2 ( x^2 - 1 ) ]
= ( x + 1 ) [ ( x - 1 ) ( x^2 + 1 ) - 2 ( x - 1 ) ( x + 1 ) ]
= ( x + 1 ) ( x - 1 ) [ ( x^2 + 1 ) - 2 ( x +1 )
= ( x + 1 ) ( x - 1 ) ( x^2 +1 - 2x - 2 )
= ( x + 1 ) ( x - 1 ) ( x^2 - 2x - 1 )
Giúp mình với mình đang cần rất gấp
Bài 1: Phân tích đa thức thành nhân tử bằng PP dùng HĐT
(x + 2)2 - (3x - 1)2
Bài 2: Phân tích đa thức thành nhân tử bằng PP nhóm hạng tử
a) x4 - 2x3 + x2 - 2x
b)
c)
d)
e)
f)
Mình rất rất cảm ơn.
1/(x+2)2 -(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x
2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)
phân tích thành nhân tử
a) x6 – x4 + 2x3 + 2x2
x⁶ - x⁴ + 2x³ + 2x²
= x²(x⁴ - x² + 2x + 2)
= x²[(x⁴ - x²) + (2x + 2)]
= x²[x²(x² - 1) +2(x + 1)]
= x²[x²(x - 1)(x + 1) + 2(x + 1)]
= x²(x + 1)[x²(x - 1) + 2]
= x²(x + 1)(x³ - x² + 2)
= x²(x + 1)(x³ + x² - 2x² - 2x + 2x + 2)
= x²(x + 1)[(x³ + x²) - (2x² + 2x) + (2x + 2)]
= x²(x + 1)[x²(x + 1) - 2x(x + 1) + 2(x + 1)]
= x²(x + 1)²(x² - 2x + 2)
x4+2x3+x2-y2
x3+x2-2x-8
phân tích đa thức thành nhân tử
a/ $=x^2(x^2+2x+1)-y^2\\=[x(x+1)]^2-y^2\\=[x(x+1)-y][x(x+1)+y]\\=(x^2+x-y)(x^2+x+y)$
b/ $=(x^3-8)+(x^2-2x)\\=(x-2)(x^2+2x+4)+x(x-2)\\=(x-2)(x^2+2x+5)$
\(x^4+2x^3+x^2-y^2=x^2\left(x+1\right)^2-y^2\\ =\left[x\left(x+1\right)-y\right]\left[x\left(x+1\right)+y\right]\\ =\left(x^2+x-y\right)\left(x^2+x+y\right)\\ x^3+x^2-2x-8=x^3-2x^2+3x^2-6x+4x-8\\ =\left(x-2\right)\left(x^2+3x-4\right)\)
phân tích đa thức: x4 + 2x3 + 4x2 + 3x + 2 thành nhân tử
Ta có:
\(\left(x^4+2x^3-x-2\right)+\left(4x^2+4x+4\right)\)
\(=\left[\left(x^4+2x^3\right)-\left(x+2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left[x^3\left(x+2\right)-\left(x-2\right)\right]+4\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)+4\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x+2\right)+4\right]\)
\(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4
Phân tích đa thức thành nhân tử
x4+2x3-4x-4
Định lý Bezout
\(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2-2x+2\right)\)
Phân tích các đa thức sau thành nhân tử:
d ) x 4 + 2 x 3 - 4 x – 4
d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)
= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)