Những câu hỏi liên quan
BT
Xem chi tiết
H24
4 tháng 7 2015 lúc 13:37

(x-2y)(x2+2xy+4y2)+8y3

=x3-(2y)3+(2y)3

=x3

=>Giá trị của biểu thức không phụ giá trị của biến y

 

Bình luận (0)
NT
30 tháng 11 2020 lúc 22:14

\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)+8y^3\)

\(=x^3-8y^3+8y^3=x^3\)

Vậy giá trị biểu thức không phụ thuộc biến y 

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
NT
30 tháng 10 2021 lúc 22:45

\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)+x^3+5\)

\(=x^3-8y^3+x^3+5\)

\(=2x^3+5-8y^3\)

Bình luận (0)
BT
Xem chi tiết
MT
4 tháng 7 2015 lúc 14:33

 (x-2y)(x2+2xy+4y^2)+8y3

=(x-2y)[x2+x.2y+(2y)2]+8y3

=x3-(2y)3+8y3

=x3-8y3+8y3

=x3

vậy  (x-2y)(x2+2xy+4y^2)+8y3 không phụ thuộc vào biến y

Bình luận (0)
HH
Xem chi tiết
AH
15 tháng 1 2023 lúc 20:05

Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$

$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.

$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$

$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)

Bình luận (1)
AH
17 tháng 1 2023 lúc 17:58

$P=(x+1)^3-(x-1)^3-3[(x-1)^2+(x+1)^2]$

$=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-3[(x^2-2x+1)+(x^2+2x+1)]$

$=6x^2+2-3(2x^2+1)=3(2x^2+1)-3(2x^2+1)=0$ là giá trị không phụ thuộc vào giá trị của biến.

Bình luận (0)
TV
Xem chi tiết
H9
2 tháng 11 2023 lúc 15:56

\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)

\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)

\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)

\(A=2x^2+2023\)

Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y 

\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)

\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)

\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)

\(B=-3x+3y\)

Vậy giá trị của biểu thức vẫn phụ thuộc vào biến 

Bình luận (0)
NH
2 tháng 11 2023 lúc 15:55

A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)

A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)

A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))

A = 2\(x^2\) - 0 + 2023 - 0

A = 2\(x^2\) + 2023

Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.

Bình luận (0)
NH
2 tháng 11 2023 lúc 16:04

B = (2\(x\) - 3)(\(x\) - y) - (\(x-y\))2 + (y - \(x\))(\(x\) + y)

B = 2\(x^2\) - 2\(xy\) - 3\(x\) + 3y - \(x^2\) + 2\(xy\) - y2 + y2 - \(x^2\)

B = (2\(x^2\) - \(x^2\) - \(x^2\)) - (2\(xy\) - 2\(xy\)) - 3\(x\) + 3y

B = (2\(x^2\) - 2\(x^2\))  - 0 - 3\(x\) + 3y

B = - 3\(x\) + 3y

Việc chứng minh giá trị biểu thức B không phụ thuộc vào biến là điều không thể 

Bình luận (0)
D5
Xem chi tiết
DA
21 tháng 7 2019 lúc 15:06

Trả lời : 

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến M = ( x2y - 3 )2 - ( 2x-y)+xy2( 9-x3 ) + 8x3 - 6x2y - y3

Đè bài đó mọi người mk viết lại cho mn nhìn rõ

Hãy cùng giúp bạn ấy nào 

Bình luận (0)
D5
21 tháng 7 2019 lúc 15:08

sai đề r bạn ơi

Bình luận (0)
LH
21 tháng 7 2019 lúc 15:10

m = (x2y - 3)2 - (2x - y)3 + xy2(6 - x3) + 8x3 - 6x2y - y3

m = x4y2 - 6x2y + 9 - (2x - y)3 + xy2(6 - x2) + 8x3 - 6x2y - y3

m = x4y2 - 6x2y + 9 - 8x3 + 12x2y - 6xy2 + y3 + xy2(6 - x3) + 8x3 - 6x2y - y3

m = x4y2 - 6x2y + 9 - 8x3 + 12x2y - 6xy2 + y3 + 6xy2 - x4y2 + 8x3 - 6x2y - y3

m = 9

Vậy: biểu thức không phụ thuộc vào giá trị của biến 

Bình luận (0)
HN
Xem chi tiết
H24
28 tháng 10 2020 lúc 16:19

\(\left(x-2y\right).\left(x^2+2xy+4y^2\right)+x^3+5\)

\(=x^3-\left(2y\right)^3+x^3+5\)

\(=2x^3-8y^3+5\)

Vậy biểu thức không phụ thuộc vào biến

Bình luận (1)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PA
19 tháng 9 2021 lúc 13:46

 B=-x(x-y)-y(x+y)+(x+y)(x-y)+2y^(2)

B=-x^2+xy-yx-y^2+x^2-xy+xy-y^2+2y^2

B=0 

vậu B ko phọ thuộc vào gt của biến

 

Bình luận (0)
NT
19 tháng 9 2021 lúc 14:28

\(B=-x\left(x-y\right)-y\left(x+y\right)+\left(x+y\right)\left(x-y\right)+2y^2\)

\(=-x^2+xy-xy-y^2+x^2-y^2+2y^2\)

=0

Bình luận (0)
NL
Xem chi tiết
NM
28 tháng 9 2021 lúc 19:04

\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)

\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)

Bình luận (0)