Những câu hỏi liên quan
NH
Xem chi tiết
NT
15 tháng 12 2023 lúc 19:20

a: Xét ΔBMD vuông tại D và ΔCME vuông tại E có

MB=MC

\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)

Do đó: ΔBMD=ΔCME

=>BD=CE

Ta có: BD\(\perp\)AM

CE\(\perp\)AM

Do đó: BD//CE

b: Xét tứ giác BDCE có

BD//CE

BD=CE

Do đó: BDCE là hình bình hành

=>BE//CD và BE=CD

c: \(AD+AE=AD+AD+DE\)

\(=2AD+2DM\)

\(=2\left(AD+DM\right)=2AM\)

Bình luận (1)
TH
Xem chi tiết
VD
14 tháng 7 2018 lúc 20:20

ab - bd - be + ce + cd + ae = (ab - be) - (bd - cd) + (ce + ae)

= b(a - e) - d(b - c) + e(c + a)

Xem lại đề nhé, hơi căng :))

Bình luận (0)
NH
Xem chi tiết
NH
23 tháng 9 2016 lúc 20:30

mk cx vừa ms gửi xoq 

khổ quá

Bình luận (0)
KN
Xem chi tiết
LN
Xem chi tiết
NT
5 tháng 8 2019 lúc 19:21
https://i.imgur.com/6Olhnm4.jpg
Bình luận (0)
TB
Xem chi tiết
HH
Xem chi tiết
NT
22 tháng 7 2021 lúc 21:55

a) Ta có: DF=FE=CE(gt)

mà DF+FE+CE=DC

nên \(DF=FE=CE=\dfrac{DC}{3}\)

Xét tứ giác ABFD có 

AB//FD(gt)

AB=FD

Do đó: ABFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác ABEF có 

AB//EF(gt)

AB=EF(cmt)

Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AF=BE(Hai cạnh đối)

Bình luận (0)
NT
22 tháng 7 2021 lúc 21:55

c) Xét tứ giác ABCE có 

AB//CE

AB=CE

Do đó: ABCE là hình bình hành

Suy ra: AE=BC

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 4 2023 lúc 19:43

a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng vơi ΔAEC

=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: \(DB=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(S_{BAC}=\dfrac{1}{2}\cdot4\cdot6=12\left(cm^2\right)\)

Bình luận (0)
QL
Xem chi tiết
HM
17 tháng 9 2023 lúc 21:33

a)

Tam giác ABD và BCE là tam giác đều nên \(\widehat {EBC} = \widehat {DAB} = 60^\circ \) và A, B, C thẳng hàng. Hai góc EBC và DAB ở vị trí đồng vị nên AD // BE.

Tam giác ABD và BCE là tam giác đều nên \(\widehat {DBA} = \widehat {ECB} = 60^\circ \) và A, B, C thẳng hàng. Hai góc DBA và ECB ở vị trí đồng vị nên BD // CE.

b) Ta có A, B, C thẳng hàng nên góc ABC bằng 180°. Mà \(\widehat {DBA} = \widehat {EBC} = 60^\circ  \Rightarrow \widehat {DBE} = 60^\circ \).

Vậy \(\widehat {ABE} = \widehat {DBC} = 120^\circ \) (\(\widehat {ABE} = \widehat {DBA} + \widehat {DBE};\widehat {DBC} = \widehat {DBE} + \widehat {EBC}\)).

c) Tam giác ABD và BCE là tam giác đều 

\(\Rightarrow AB=AD, BE=BC\)

Xét hai tam giác ABE và DBC có:

     AB = DB;

     \(\widehat {ABE} = \widehat {DBC} = 120^\circ \);

     BE = BC.

\(\Rightarrow \Delta ABE = \Delta DBC\) (c.g.c)

Do đó, AE = DC ( 2 cạnh tương ứng).

Bình luận (0)