Cho tam giác ABC có góc B bằng 45 độ, AB=căn 18 (cm), BC=7 (cm). Tính AC.
Tam giác ABC có góc B = 45 độ,BC = 7 cm,AB= căn bậc 18 cm.kẻ AH vuông góc với BC,H thuộc BC.tính chu vi tam giác ABC
Ta có: ΔAHB vuông tại H
mà \(\widehat{B}=45^0\)
nên ΔAHB vuông cân tại H
=>AH=HB
Ta có: ΔAHB vuông tại H
nên \(AH^2+HB^2=AB^2\)
=>AH=HB=3cm
=>HC=4cm
=>AC=5cm
C=AB+BC+AC
\(=7+5+3\sqrt{2}=12+3\sqrt{2}\left(cm\right)\)
2. Cho tam giác ABC có AB=25cm, góc B = 70 độ, góc C=50 độ. Tính BC.
3. Cho tam giác ABC có góc B = 60 độ. Các hình chiếu vuông góc của AB và AC lên BC theo thứ tự bằng 12 cm và 18 cm. Tính các cạnh, các góc và đường cao của tam giác ABC.
cảm ơn các bạn trước
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
Tam giác ABC có góc B=45 độ, BC=7cm, AB=\(\sqrt{18}\)cm. Kẻ AH ⊥ BC, H ∈ BC. Tính chu vi tam giác ABC.
Xét tam giác ABC
Theo định lí cos
\(AC^2=AB^2+BC^2-2AB.BCcos45=25\Rightarrow AC=5cm\)
Chu vi tam giác ABC là
AC + AB + BC = 7 + 3\(\sqrt{3}\)+5 = 12 + 3\(\sqrt{3}\)cm
Cho tam giác ABC,góc A bằng 90 độ, AB=24 cm, AC=18 cm. Từ trung điểm M trên cạnh BC, kẻ đường vuông góc với BC, cắt AC tại D, AB tại E. a) Chứng minh DMC đồng dạng ABC và tính độ dài các cạnh của tam giác DMC ? b) Tính BE ?
a: Xét ΔDMC vuông tại M và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔDMC\(\sim\)ΔABC
cho tam giác ABC có AB = 12 cm ,AC = 13 cm , BC = 15 cm so sánh các góc của tam giác ABC
cho tam giác ABC có góc A bằng 50 độ góc B bằng 60 độ. Tính góc C và so sánh các cạnh của tam giác ABC
a: Xét ΔABC có AB<AC<BC
nên góc C<góc B<góc A
b: góc C=180-50-60=70 độ
Xét ΔABC có góc A<góc B<góc C
nên BC<AC<AB
Cho tam giác ABC có góc A = 90 độ, AH vuông góc với BC. Biết AH =2 căn 3 cm, AB/AC= căn 3. Tính BH; CH; AB; AC.
Ta có: \(\dfrac{AB}{AC}=\sqrt{3}\)
\(\Leftrightarrow HB=3\cdot HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow3\cdot HC=12\)
hay HC=4(cm)
\(\Leftrightarrow HB=\dfrac{4}{3}\left(cm\right)\)
\(\Leftrightarrow BC=\dfrac{16}{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{8}{3}\left(cm\right)\\AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC có AB = 1 cm, AC = 2cm, góc ABC = 45 độ, góc ACB = 30 độ. Tính độ dài BC và diện tích tam giác ABC.
cho tam giác ABC vuông tại A . Có AB bằng 6 cm. AC bằng 8 cm. a tính độ dài cạnh BC và chu vi tam giác ABC . Đường phân giác của góc B cắt AC tại D .Vẽ DH vuông góc BC . [ H thuộc BC ]. CM tam giác ABD = tam giác HBD c CM DA < DC . có vẽ hình nha mọi người
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
Cho tam giác ABC có AB= căn 2 cm; góc BAC=60 độ ;góc ACB bằng 45 độ .Kẻ các đường cao AH và Bk.
A)Tính AK;BK;CK;BC;AH
B)Tính góc B;góc HAB; góc HAC