((0,1)^2)^0+((1/7)^-1)^2.1/49 ((2^2)^3 :2^5
A= (-1/3)^-1 - (-6/7)^0 + (1/2)^2 :2
B= [(0,1)^2]^0 + [(1/7)^-1]^2 x 1/49 x [(2^2)^3 : 2^5]
Bài 8: Viết các biểu thức sau đây dưới dạng a^n (a e Q; n e N*)
a, 9. 3^5. 1/81 ; b, 8.2^4: (2^3.1/16) ; c, 3^2.3^5:1/27 ; d, 125.5^2.1/625
Bài 12: Tính:
a) (-0,1)^2.(-0,1)^3 ; b) 125^2 : 25^3 ; c) (7^3)^2 : (7^2)^3 ; d) (-2)^3+2^2+(-1)^20+(-2)^0 ; e) 2^4+8.[(-3)^2 : 1/2]^0-2^-2.4+(-2)^-2
mong các bạn giúp đỡ mình nhé! Mình đang cần gấp!
B= \(\left[\left(0,1\right)^2\right]^0\) +\(\left[\left(\frac{1}{7}\right)^{-1}\right]^2\) .\(\frac{1}{49}.\left[\left(2^2\right)^3.2^5\right]\)
\(B=\left[\left(0,1\right)^2\right]^0+\left[\left(\frac{1}{7}\right)^{-1}\right]^2.\frac{1}{49}.\left[\left(2^2\right)^3.2^5\right]\)
\(=1+\left(\frac{1}{\frac{1}{7}}\right)^2.\frac{1}{49}.\left(2^6.2^5\right)\)
\(=1+7^2.\frac{1}{49}.2^{11}\)
\(\Rightarrow1+49.\frac{1}{49}.2^{11}\)
\(=1+2^{11}\)
Vậy \(B=1+2^{11}\)
Bài 31 : Tính :
a) \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
b) \(\left(-\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
c) \(\text{[}\left(0,1\right)^2\text{]}^0+\text{[}\left(\frac{1}{7}\right)^1\text{]}^2.\frac{1}{49}.\text{[}\left(2^3\right)^3:2^5\text{]}\)
Mong các cao nhân giúp ak , đang cần gấp
a) \(\frac{81}{16}\)
b) \(\frac{-31}{8}\)
c) \(\frac{2417}{2401}\)
Bài 31:
a) \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
\(=\left(\frac{1}{2}+\frac{1}{3}\right):\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{2}.1\right):8\)
\(=\frac{5}{6}:\frac{1}{6}+\frac{1}{2}:8\)
\(=5+\frac{1}{16}\)
\(=\frac{81}{16}.\)
c) \(\left[\left(0,1\right)^2\right]^0+\left[\left(\frac{1}{7}\right)^1\right]^2.\frac{1}{49}.\left[\left(2^3\right)^3:2^5\right]\)
\(=1+\frac{1}{49}.\frac{1}{49}.16\)
\(=1+\frac{1}{2401}.16\)
\(=1+\frac{16}{2401}\)
\(=\frac{2417}{2401}.\)
Chúc bạn học tốt!
tính:
a) \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
b) \(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
c) \(\left[\left(0,1\right)^2\right]^0+\left[\left(\dfrac{1}{7}\right)^{-1}\right]^2.\dfrac{1}{49}.\left[\left(2^2\right)^3:2^5\right]\)
giúp mk vs các bn mk dg cần gấp lm
Bài 1 : Tính
\(a,\left[\frac{-54}{64}-\frac{1}{9}.\frac{8}{27}.\frac{-1}{3}\right].\frac{-81}{128}\)
\(b,\left[\left(0,1\right)^2\right]^0+7^2.\frac{1}{49}.\left[\left(2^2\right)^3:2^5\right]\)
Các bạn giúp mình với mình đang cần gấp
Bài 1 Tính
a,(1/3)^-1 - (-6/7)^0 +(1/2)^2:2
b,[(0,1)^2]^0+[1/7^-1]^2 x 1/49 x [(2^2)^3:2^5]
Bài 2 Tìm số nguyên n biết
a,1/9 x 27^n=3^n
b,3^-2 x 3^4 x 3^n =3^7
c,2^-1 x 2^n 4 x 2^-n=9 x 2^5
d,32^-n x 16^n=2048
e, (n-2)^1=16
f, (2n+1)^3=-27
giải chi tiết hộ mk nhé
giải luôn hộ mk hnay mk phải đi học r
gấp : đanng kiểm tra
ai trc tick luôn
a)0,1(6) + 1,(3)
b)1,(3) +0,1(2).2.8/11
c)3,(6) + 1,(36) .2.1/5
càng nhanh càng tốt
nhanh lên nha mn
có là mik k lun(nhớ đúng nhé)
anh ơi đang kiểm tra anh tự làm đi đừng hỏi anh ạ
em khuyên chân thành để tốt cho anh đấy
1.1/3-2√2 + 1/2+√5 2.1/√3+√7 + 2/1-√7 3.a-2√a/2-√a 4.x√y+y√x/√x+√y
1: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=\dfrac{3+2\sqrt{2}}{1}+\dfrac{\sqrt{5}-2}{1}\)
\(=3+2\sqrt{2}+\sqrt{5}-2=2\sqrt{2}+\sqrt{5}+1\)
2: \(\dfrac{1}{\sqrt{3}+\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}}{4}+\dfrac{2\left(1+\sqrt{7}\right)}{-6}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}}{4}-\dfrac{1+\sqrt{7}}{3}\)
\(=\dfrac{3\left(\sqrt{7}-\sqrt{3}\right)-4\left(\sqrt{7}+1\right)}{12}=\dfrac{-\sqrt{7}-3\sqrt{3}-4}{12}\)
3:
\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{2-\sqrt{a}}=-\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=-\sqrt{a}\)
4:
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{xy}\)
1) \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=\dfrac{3+2\sqrt{2}}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}+\dfrac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(=\dfrac{3+2\sqrt{2}}{3^2-\left(2\sqrt{2}\right)^2}+\dfrac{\sqrt{5}-2}{\left(\sqrt{5}\right)^2-2^2}\)
\(=\dfrac{3+2\sqrt{2}}{1}+\dfrac{\sqrt{5}-2}{1}\)
\(=3+2\sqrt{2}+\sqrt{5}-2\)
\(=2\sqrt{2}+\sqrt{5}+1\)
2) \(\dfrac{1}{\sqrt{3}-\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
\(=\dfrac{\sqrt{3}+\sqrt{7}}{\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{3}-\sqrt{7}\right)}+\dfrac{2\cdot\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{7}}{\left(\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}+\dfrac{2\cdot\left(1+\sqrt{7}\right)}{1^2-\left(\sqrt{7}\right)^2}\)
\(=\dfrac{-\sqrt{3}-\sqrt{7}}{4}-\dfrac{2\cdot\left(1+\sqrt{7}\right)}{6}\)
\(=\dfrac{-\sqrt{3}-\sqrt{7}}{4}-\dfrac{1+\sqrt{7}}{3}\)
\(=\dfrac{-3\sqrt{3}-3\sqrt{7}}{12}-\dfrac{4+4\sqrt{7}}{12}\)
\(=\dfrac{-3\sqrt{3}-3\sqrt{7}-4-4\sqrt{7}}{12}\)
\(=\dfrac{-3\sqrt{3}-7\sqrt{7}-4}{12}\)
3) \(\dfrac{a-2\sqrt{a}}{2-\sqrt{a}}\)
\(=-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\)
\(=-\dfrac{\sqrt{a}\cdot\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)
\(=-\sqrt{a}\)
4) \(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{xy}+\sqrt{y}\cdot\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{xy}\)