Cho △ABC : Góc A = 90o, \(\dfrac{AB}{AC}=\dfrac{5}{7}\), AH = 15cm . Tính HB, HC
Cho ∆ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). Đường cao AH = 15cm. Tính HB, HC.
Áp dụng hệ thức trong tam giác vuông có:
\(AH^2=HB.HC\Leftrightarrow225=HB.HC\)
\(AB^2=BH.BC\)
\(AC^2=CH.BC\)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{BH}{CH}=\dfrac{25}{49}\)
\(\Rightarrow BH=\dfrac{25CH}{49}\)
Có \(HB.HC=225\)
\(\Leftrightarrow\dfrac{25HC^2}{49}=225\)\(\Leftrightarrow HC=21\) (cm)
\(\Rightarrow HB=\dfrac{25.21}{49}=\dfrac{75}{7}\) (cm)
Vậy....
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
nên \(\dfrac{AB}{5}=\dfrac{AC}{7}\)
Đặt \(\dfrac{AB}{5}=\dfrac{AC}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k\\AC=7k\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(5k\right)^2}+\dfrac{1}{\left(7k^2\right)}\)
\(\Leftrightarrow k=\dfrac{3\sqrt{74}}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k=\dfrac{5\cdot3\sqrt{74}}{7}=\dfrac{15\sqrt{74}}{7}\\AC=7k=\dfrac{7\cdot3\sqrt{74}}{7}=3\sqrt{74}\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=\left(\dfrac{15\sqrt{74}}{7}\right)^2-15^2=\dfrac{5625}{49}\)
hay \(HB=\dfrac{75}{7}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=\left(3\sqrt{74}\right)^2-15^2=441\)
hay HC=21(cm)
\(\dfrac{AB}{AC}=\dfrac{5}{7}=>AB=\dfrac{5AC}{7}\)
áp dụng hệ thức lượng \(=>\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=>\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5AC}{7}\right)^2}+\dfrac{1}{AC^2}=>AC=3\sqrt{74}\)
\(=>AB=\dfrac{15\sqrt{74}}{7}cm\)
hệ thức lượng \(=>AH.BC=AB.AC=>BC=\dfrac{AB.AC}{AH}=\dfrac{\left(3\sqrt{74}\right)\left(\dfrac{15\sqrt{74}}{7}\right)}{15}=\dfrac{222}{7}cm\)
áp dụng hệ thức lượng
\(=>AB^2=BH.BC=>BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{15\sqrt{74}}{7}\right)^2}{\dfrac{222}{7}}=\dfrac{75}{7}cm\)
\(=>HC=\dfrac{222}{7}-\dfrac{75}{7}=21cm\)
Cho ∆ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\) . Đường cao AH = 15cm. Tính HB, HC.
AB/AC=5/7
=>HB/HC=(5/7)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
AH^2=HB*HC
=>25k*49k=15^2
=>k^2=9/49
=>k=3/7
=>HB=25*3/7=75/7cm; HC=49*3/7=21cm
cho tam giác ABC vuông tại A biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). đường cao AH=15cm. tính HB, HC
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
nên \(\dfrac{HB}{HC}=\dfrac{25}{49}\)
hay \(HB=\dfrac{25}{49}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2=15^2:\dfrac{25}{49}=441\)
\(\Leftrightarrow HC=21\left(cm\right)\)
\(\Leftrightarrow HB=\dfrac{75}{7}\left(cm\right)\)
Câu 5: Cho tam giác ABC có góc A=90o , đường cao AH. Biết BC=13cm, AB=8cm.
a. Tính độ dài các đoạn thẳng AC, AH, HB,HC.
b. Tính số đo góc ABC.
Cho tam giác ABC vuông tại A, biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). Đường cao AH = 15cm. Tính HB, HC
( Vẽ hình nữa nha )
AB/AC=5/7
nên HB/HC=25/49
=>HB=25/49HC
Xét ΔBAC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{49}=15^2=225\)
\(\Leftrightarrow HC=21\left(cm\right)\)
\(HB=\dfrac{25}{49}HC=\dfrac{75}{7}\left(cm\right)\)
Cho tam giác ABC vuông tại A, biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). Đường cao AH = 15cm. Tính HB, HC
( Vẽ hình nữa nha )
Lời giải:
Từ \(\frac{AB}{AC}=\frac{5}{7}\Leftrightarrow \frac{AB}{5}=\frac{AC}{7}\).
Đặt \(\frac{AB}{5}=\frac{AC}{7}=a\Rightarrow AB=5a; AC=7a\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{(5a)^2+(7a)^2}=\sqrt{74}a\)
\(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{5a.7a}{\sqrt{74}a}\)
\(\Leftrightarrow 15=\frac{35a}{\sqrt{74}}\Rightarrow a=\frac{3\sqrt{74}}{7}\) (cm)
\(\Rightarrow \left\{\begin{matrix} AB=5a=\frac{15\sqrt{74}}{7}\\ AC=3\sqrt{74}\end{matrix}\right.\)
Áp dụng định lý Pitago cho các tam giác vuông $AHB, AHC$:
\(HB=\sqrt{AB^2-AH^2}=\sqrt{(\frac{15\sqrt{74}}{7})^2-15^2}=\frac{75}{7}\) (cm)
\(HC=\sqrt{AC^2-AH^2}=\sqrt{(3\sqrt{74})^2-15^2}=21\) (cm)
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
Bài 2:
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng vói cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{6}\), đường cao AH = 30cm. Tính HB, HC
Hệ thức lượng trong tam giác vuông :
\(AB^2=BC.BH\left(1\right)\)
\(AC^2=BC.CH\left(2\right)\)
\(\left(1\right):\left(2\right)\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\left(\dfrac{AB}{AC}=\dfrac{5}{6}\right)\)
\(\Rightarrow BH=\dfrac{25}{36}CH\)
mà \(AH^2=BH.CH\)
\(\Rightarrow\dfrac{25}{36}CH^2=AH^2=30^2\)
\(\Rightarrow\dfrac{5}{6}CH=30\Rightarrow CH=\dfrac{30.6}{5}=36\) (\(\left(cm\right)\)
\(\Rightarrow BH=\dfrac{25}{36}.36=25\) \(\left(cm\right)\)
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}=\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Rightarrow\dfrac{30}{HC}=\dfrac{5}{6}\Rightarrow HC=\dfrac{6.30}{5}=36cm\)
\(\Rightarrow\dfrac{HB}{30}=\dfrac{5}{6}\Rightarrow HB=\dfrac{5.30}{6}=25cm\)