Violympic toán 9

NB

Cho ∆ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{7}\). Đường cao AH = 15cm. Tính HB, HC.

LH
4 tháng 7 2021 lúc 11:02

Áp dụng hệ thức trong tam giác vuông có:

\(AH^2=HB.HC\Leftrightarrow225=HB.HC\)

\(AB^2=BH.BC\)

\(AC^2=CH.BC\)

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{BH}{CH}=\dfrac{25}{49}\)

\(\Rightarrow BH=\dfrac{25CH}{49}\)

Có \(HB.HC=225\)

\(\Leftrightarrow\dfrac{25HC^2}{49}=225\)\(\Leftrightarrow HC=21\) (cm)

\(\Rightarrow HB=\dfrac{25.21}{49}=\dfrac{75}{7}\) (cm)

Vậy....

Bình luận (0)
NT
4 tháng 7 2021 lúc 11:06

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)

nên \(\dfrac{AB}{5}=\dfrac{AC}{7}\)

Đặt \(\dfrac{AB}{5}=\dfrac{AC}{7}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k\\AC=7k\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(5k\right)^2}+\dfrac{1}{\left(7k^2\right)}\)

\(\Leftrightarrow k=\dfrac{3\sqrt{74}}{7}\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k=\dfrac{5\cdot3\sqrt{74}}{7}=\dfrac{15\sqrt{74}}{7}\\AC=7k=\dfrac{7\cdot3\sqrt{74}}{7}=3\sqrt{74}\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=\left(\dfrac{15\sqrt{74}}{7}\right)^2-15^2=\dfrac{5625}{49}\)

hay \(HB=\dfrac{75}{7}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=\left(3\sqrt{74}\right)^2-15^2=441\)

hay HC=21(cm)

Bình luận (0)
MY
4 tháng 7 2021 lúc 11:09

\(\dfrac{AB}{AC}=\dfrac{5}{7}=>AB=\dfrac{5AC}{7}\)

áp dụng hệ thức lượng \(=>\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=>\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5AC}{7}\right)^2}+\dfrac{1}{AC^2}=>AC=3\sqrt{74}\)

\(=>AB=\dfrac{15\sqrt{74}}{7}cm\)

hệ thức lượng \(=>AH.BC=AB.AC=>BC=\dfrac{AB.AC}{AH}=\dfrac{\left(3\sqrt{74}\right)\left(\dfrac{15\sqrt{74}}{7}\right)}{15}=\dfrac{222}{7}cm\)

áp dụng hệ thức lượng

\(=>AB^2=BH.BC=>BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{15\sqrt{74}}{7}\right)^2}{\dfrac{222}{7}}=\dfrac{75}{7}cm\)

\(=>HC=\dfrac{222}{7}-\dfrac{75}{7}=21cm\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
TJ
Xem chi tiết
VP
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết