Chứng minh bất đẳng thức :
(a+b ) 2 >= 4ab
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
help me vs
a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)
\(\Leftrightarrow a^2-2a+1\ge0\forall a\)
\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)
b) Áp dụng bất đẳng thức Cosi ta có:
\(a+1\ge2\sqrt{a};b+1\ge2\sqrt{b};c+1\ge2\sqrt{c}\\ \Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)
Dấu = xảy ra khi và chỉ khi a=b=c=1
Chứng minh bất đẳng thức :
(a+b )2 lớn hơn hoặc bằng 4ab
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
\(\left(a+b\right)^2\ge4ab\)
<=> \(a^2+2ab+b^2\ge4ab\)
<=> \(a^2+2ab+b^2-4ab\ge0\)
<=> \(a^2-2ab+b^2\ge0\)
<=> \(\left(a-b\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra <=> a=b
Cho a, b là các số dương thỏa mãn điều kiện ( a + b ) 3 + 4 a b ≤ 12. Chứng minh bất đẳng thức 1 1 + a + 1 1 + b + 2015 a b ≤ 2016.
Ta có 12 ≥ ( a + b ) 3 + 4 a b ≥ 2 a b 3 + 4 a b . Đặt t = a b , t > 0 thì
12 ≥ 8 t 3 + 4 t 2 ⇔ 2 t 3 + t 2 − 3 ≤ 0 ⇔ ( t − 1 ) ( 2 t 2 + 3 t + 3 ) ≤ 0
Do 2 t 2 + 3 t + 3 > 0 , ∀ t nên t − 1 ≤ 0 ⇔ t ≤ 1 . Vậy 0 < a b ≤ 1
Chứng minh được 1 1 + a + 1 1 + b ≤ 2 1 + a b , ∀ a , b > 0 thỏa mãn a b ≤ 1
Thật vậy, BĐT 1 1 + a − 1 1 + a b + 1 1 + b − 1 1 + a b ≤ 0
a b − a ( 1 + a ) ( 1 + a b ) + a b − b ( 1 + b ) ( 1 + a b ) ≤ 0 ⇔ b − a 1 + a b a 1 + a − b 1 + b ⇔ ( b − a ) 2 ( a b − 1 ) ( 1 + a b ) ( 1 + a ) ( 1 + b ) ≤ 0
Do 0 < a b ≤ 1 nên BĐT này đúng
Tiếp theo ta sẽ CM 2 1 + a b + 2015 a b ≤ 2016 , ∀ a , b > 0 thỏa mãn a b ≤ 1
Đặt t = a b , 0 < t ≤ t ta được 2 1 + t + 2015 t 2 ≤ 2016
2015 t 3 + 2015 t 2 − 2016 t − 2014 ≤ 0 ⇔ ( t − 1 ) ( 2015 t 2 + 4030 t + 2014 ) ≤ 0
BĐT này đúng ∀ t : 0 < t ≤ 1
Vậy 1 1 + a + 1 1 + b + 2015 a b ≤ 2016. Đẳng thức xảy ra a = b = 1
Chứng minh đẳng thức ( a-b)^2 = ( a+b)^2 - 4ab
Ta có: \(VP=\left(a+b\right)^2-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2\)
\(=\left(a-b\right)^2=VT\)(đpcm)
Chứng minh hằng đẳng thức:
1) (a+b)^2-(a-b)^2=4ab
3) (a+b)^2-4ab=(a-b)^2
5) a^3+b^3=(a+b)^3-3ab(a+b)
1) biến đổi vế trái:
= a2+2ab+b2 -a2 +2ab -b2
=4ab = vế phải ( đpcm)
3;5 tuong tu
1) (a + b)2 - (a - b)2 = a2 + 2ab + b2 - a2 + 2ab - b2 = 4ab
3) (a + b)2 - 4ab = a2 + 2ab + b2 - 4ab = a2 - 2ab + b2 = (a - b)2
5) a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
1) (a+b)^2 - (a-b)^2 = 4ab
VT= (a + b - a +b) (a+b + a-b)
= 2b * 2a
= 4ab = VP
Vậy (a+b)^2 - (a-b)^2 = 4ab
2) (a+b)^2 - 4ab = (a-b)^2
VT= (a+b)^2 - 4ab
= a^2 + 2ab + b^2 - 4ab
= a^2 - 2ab + b^2
= (a-b)^2 = VP
Vậy (a+b)^2 - 4ab = (a-b)^2
Bài 2 Chứng minh hằng đẳng thức
a. (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc
b. (a + b) 2 + (a − b) 2 = 2a 2 + 2b 2 .
c. (a + b) 2 − (a − b) 2 = 4ab.
a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)
b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)
c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)
\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)
a) (a+b+c)2 = (a+b)2 + 2(a+b)c + c2 = a2 + 2ab +b2 + 2ac+ 2bc+ c2
b) (a+b)2 + (a-b)2 = a2+ 2ab+ b2+ a2- 2ab +b2= 2a2 + 2b2
c) (a+b)2- (a-b)2 = a2+ 2ab+ b2- a2+ 2ab- b2 = 4ab
sử dụng bất đăngt thức vừa chứng minh và đẳng thức |a| = |a+b+(-b)| để chứng minh bất đăng thức |a|-|b| < |a+b|
chứng minh bất đẳng thức a*a+b*b+2>2(a+b)
bạn chép đề bài nhầm ak phải thế này chứ:a2+b2 +2≥2(a+b)
trả lời :
BĐT ⇔a2-2a+1+b2-2b+1≥0
⇔(a-1)2+(b-1)2≥0 điều này đúng với mọi a;b
Dấu "=" xảy ra ⇔a=b=1
Vậy BĐT đã được chứng minh
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Lời giải:
Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:
$a+b\geq 2\sqrt{ab}$
$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$
$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$
Ta có đpcm
Dấu "=" xảy ra khi $a=b$