Những câu hỏi liên quan
NV
Xem chi tiết
ND
16 tháng 4 2021 lúc 21:54

Ta có: \(\frac{x}{9}=\frac{3}{y}+\frac{1}{18}\)

\(\Leftrightarrow\frac{xy-27}{9y}=\frac{1}{18}\)

\(\Leftrightarrow18xy-486=9y\)

\(\Leftrightarrow18xy-9y=486\)

\(\Leftrightarrow9y\left(2x-1\right)=486\)

\(\Leftrightarrow y\left(2x-1\right)=54=1\cdot54=3\cdot18=9\cdot6=27\cdot2\)

Vì 2x - 1 lẻ nên ta có bảng sau:

2x-113927
y541862
x12514

Vậy ta có 4 cặp số (x;y) thỏa mãn: (1;54) ; (2;18) ; (5;6) ; (14;2)

Bình luận (1)
 Khách vãng lai đã xóa
H24
15 tháng 2 2024 lúc 13:17

Đáp án: (1;54) (2;18) (5;6) (14;2)

 

Giải thích các bước giải:x/9-3/y=1/18⇔(xy-27)/(9y)=1/18

⇔xy-27=y/2⇔2xy-54=y⇔2xy-y=54⇔y(2x-1)=54

do x,y là số tự nhiên ⇒y(2x-1)=54=1.54=2.27=3.18=6.9

y=1;2x-1=54⇒x=55/2 loại

y=2;2x-1=27⇒x=14

y=3;2x-1=18 loại

y=6;2x-1=9⇒x=5

y=9;2x-1=6 loại 

y=18;2x-1=3⇒x=2

y=27;2x-1=2 loại

y=54;2x-1=1⇒x=1

Chúc học tốt

Bình luận (0)
DA
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
NL
26 tháng 12 2020 lúc 0:00

1.

\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)

\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)

\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)

Đặt \(xy=a\Rightarrow0< a\le1\)

\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)

\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)

\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)

\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)

\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)

\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)

Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)

Bình luận (3)
NL
26 tháng 12 2020 lúc 0:08

2.

Đặt \(A=9^n+62\)

Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)

Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)

\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)

Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\)  và \(6m+1\)

\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)

\(\Leftrightarrow36m^2=9^n+63\)

\(\Leftrightarrow4m^2=9^{n-1}+7\)

\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)

\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)

Pt ước số cơ bản, bạn tự giải tiếp

Bình luận (2)
TL
Xem chi tiết
HH
4 tháng 10 2018 lúc 20:11

Luỹ thừa các số có tận cùng là chữ số 5 sẽ tận cùng bằng 5

Do đó 2.5\(^y\)sẽ tận cùng bằng 0

=> 35\(^x\)+9 sẽ tận cùng bằng chữ số 0

=> 35\(^x\)tận cùng bằng chữ số 1 

=> x=0 =>2.5\(^y\)=10

=>y=1

Vậy x=0 ; y =1

Bình luận (0)
DB
4 tháng 10 2018 lúc 20:26

khó hiểu

Bình luận (0)
NL
Xem chi tiết
CT
23 tháng 8 2016 lúc 21:17

\(\left(x+2\right)\left(y+3\right)=9\)

\(=>x+2;y+3\)thuộc \(Ư\left(9\right)\)

Mà \(Ư\left(9\right)=\left\{\left(1;9\right),\left(3;3\right)\right\}\)

Nếu  \(x+2=1=>x=-1\)\(;y+3=9=>y=6\)

Nếu \(x+2=9=>x=7\)\(;\)\(y+3=1=>y=-2\)

Nếu \(x+2=3=>x=1\)\(;\)\(y+3=3=>y=0\)

Vậy............

Bình luận (0)
SL
26 tháng 1 2019 lúc 19:52

Có (x + 2)(y + 3) = 9 => x + 2; y + 3 ∈ Ư(9)

Mà x, y ∈ N => x + 2; y + 3 ∈ N

=> x + 2; y + 3 ∈ {1; 3; 9}

Lập bảng giá trị:

x + 2193
y + 3913
x-171
y6-20

Đối chiếu điều kiện x; y ∈ N

=> Cặp (x; y) cần tìm là (1; 0).

Bình luận (0)
NH
Xem chi tiết
TD
Xem chi tiết
VD
6 tháng 5 2023 lúc 19:48

2/x + y/3 = 2

=> 2/x = 2 - y/3

= 2/x = 6-y/3

=> x(6-y) = 2.3

x(6-y) = 6

Do x∈N => x >= 0. Để x(6-y) = 6 thì x > 0

Mà 6>0 => 6-y > 0

Mà y∈ N => 6-y ∈ N*

Ta có bảng:

x1236
6-y6321
y0345

Thử lại thỏa mãn.

Vậy (x,y) = (1,0); (2,3); (3,4); (6,5)

 

Bình luận (0)
ND
Xem chi tiết