Tìm x biết:
a,(2/3)^x+1=16^81
b,(x+2/5)^5=(x+2/5)^3
Bài 3: Tìm x, biết:
a)(3x-5)(5-3x)+9(x+1)2=30
b)(x+4)2-(x+1)(x-1)=16
b. (x + 4)2 - (x + 1)(x - 1) = 16
<=> x2 + 4x + 16 - (x2 - 1) = 16
<=> x2 + 4x + 16 - x2 + 1 - 16 = 0
<=> x2 - x2 + 4x = 16 - 16 - 1
<=> 4x = -1
<=> x = \(\dfrac{-1}{4}\)
\(a,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\\ \Leftrightarrow x=\dfrac{23}{24}\\ b,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Tìm x, biết:
a)\(x.\frac{{14}}{{27}} = \frac{{ - 7}}{9}\)
b)\(\left( {\frac{{ - 5}}{9}} \right):x = \frac{2}{3};\)
c)\(\frac{2}{5}:x = \frac{1}{{16}}:0,125\)
d)\( - \frac{5}{{12}}x = \frac{2}{3} - \frac{1}{2}\)
a)
\(\begin{array}{l}x.\frac{{14}}{{27}} = \frac{{ - 7}}{9}\\x = \frac{{ - 7}}{9}:\frac{{14}}{{27}}\\x = \frac{{ - 7}}{9}.\frac{{27}}{{14}}\\x = \frac{{ - 3}}{2}\end{array}\)
Vậy \(x = \frac{{ - 3}}{2}\).
b)
\(\begin{array}{l}\left( {\frac{{ - 5}}{9}} \right):x = \frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right):\frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right).\frac{3}{2}\\x = \frac{{ - 5}}{6}\end{array}\)
Vậy \(x = \frac{{ - 5}}{6}\).
c)
\(\begin{array}{l}\frac{2}{5}:x = \frac{1}{{16}}:0,125\\\frac{2}{5}:x = \frac{1}{{16}}:\frac{1}{8}\\\frac{2}{5}:x = \frac{1}{{16}}.8\\\frac{2}{5}:x = \frac{1}{2}\\x = \frac{2}{5}:\frac{1}{2}\\x = \frac{2}{5}.2\\x = \frac{4}{5}\end{array}\)
Vậy \(x = \frac{4}{5}\)
d)
\(\begin{array}{l} - \frac{5}{{12}}x = \frac{2}{3} - \frac{1}{2}\\ - \frac{5}{{12}}x = \frac{4}{6} - \frac{3}{6}\\ - \frac{5}{{12}}x = \frac{1}{6}\\x = \frac{1}{6}:\left( { - \frac{5}{{12}}} \right)\\x = \frac{1}{6}.\frac{{ - 12}}{5}\\x = \frac{{ - 2}}{5}\end{array}\)
Vậy \(x = \frac{{ - 2}}{5}\).
Chú ý: Khi trình bày lời giải bài tìm x, sau khi tính xong, ta phải kết luận.
Bài 2. Tìm x, biết:
a) (x+3)(x−1)−x(x−5)=11
b) (x2−4x+16)(x+4)−x(x+1)(x+2)+3x2=0
a: ta có: \(\left(x+3\right)\left(x-1\right)-x\left(x-5\right)=11\)
\(\Leftrightarrow x^2+2x-3-x^2+5x=11\)
\(\Leftrightarrow x=2\)
b: Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+2\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x^3-3x^2-2x+3x^2=0\)
\(\Leftrightarrow2x=64\)
hay x=32
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Tìm số nguyên x biết:
a) x + 257 = 81
b) x - 546 = -35
c) 721 - x = -615
d) x.(-25) = 500
e) x : 5 = -15
f) -9x = -612
a: x=81-257=-176
b: x=-35+546=511
c: x=721+615=1336
d: x=-500:25=-20
e: x=-15*5=-75
f: x=612/9=68
Tìm x, biết:
a, \(\left(2\dfrac{3}{4}-1\dfrac{4}{5}\right)x=1\)
b, \(x^2-9\) \(3-5x=0\)
c, \(\left|3x-1\right|+2\dfrac{3}{4}=3\dfrac{1}{16}\)
a) \(\left(2\dfrac{3}{4}-1\dfrac{4}{5}\right)\cdot x=1\)
\(\left(\dfrac{11}{4}-\dfrac{9}{5}\right)\cdot x=1\)
\(\dfrac{19}{20}x=1\)
\(x=\dfrac{20}{19}\)
Vậy \(x=\dfrac{20}{19}\)
b) \(\left(x^2-9\right)\left(3-5x\right)=0\)
TH1:
\(x^2-9=0\)
\(x^2=9\)
\(x^2=3^2=\left(-3\right)^2\)
=>\(x\in\left\{3;-3\right\}\)
TH2:
\(3-5x=0\)
\(5x=3\)
\(x=\dfrac{3}{5}\)
Vậy \(x\in\left\{3;-3;\dfrac{3}{5}\right\}\)
Bài 4. Tìm số nguyên x , biết:
a) |x - 2|= 0 b) |x + 3|= 1 c) -3 |4 - x|= -9 d) |2x + 1|= -2
Bài 5. Tìm số nguyên x, biết:
a) (x + 3)mũ 2 = 36 b) (x + 5)mũ 2 =100 c) (2x - 4)mũ 2 = 0 d) (x - 1)mũ 3 = 27
Tìm x biết:
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
c) (x - 1)3 - x2.(x - 2) + 5 = 0.
d) x2 - 4x + 5 = 0.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
b) (2x - 1)2 - 3.(x - 2).(x + 2) - 25 = 0.
<=> 4x^2 - 4x + 1 - 3x^2 + 12 - 25 = 0
<=> x2 - 4x - 12 = 0
<=> (x+2)(x-6) = 0
<=> x = -2 hoặc x = 6
d) x2 - 4x + 5 = 0.
<=> (x - 2)2 = -1 (vô lý)
Vậy phương trình vô nghiệm
bài 2:tìm x, biết:
a. x + 1^3 = 2^5 - ( -1^3 )
b. 3^7 - x = 1^4 - ( -3^5 )
a) \(x+1^3=2^5-\left(-1^3\right)\)
\(\Rightarrow x+1=33\)
=> x = 32
b) \(3^7-x=1^4-\left(-3^5\right)\)
\(\Rightarrow2187-x=1+243=244\)
=> x = 1943
a) \(\Leftrightarrow x+1=32+1\)
\(\Leftrightarrow x=32\)
Vậy x = 32
b) \(\Leftrightarrow2187-x=1+243\)
\(\Leftrightarrow2187-x=244\)
\(\Leftrightarrow x=1943\)
Vậy x = 1943
a) \(x+1^3=2^5-\left(-1^3\right)\)
\(x+1=32-\left(-1\right)\)
\(x+1=33\)
\(x=33-1\)
\(x=32\)
b) \(3^7-x=1^4-\left(-3^5\right)\)
\(2187-x=1-\left(-243\right)\)
\(2187-x=244\)
\(x=2187-244\)
\(x=1943\)
Tìm số tự nhiên x biết:
a) 25 + 7x = 144
b) 33 - 12x = 9
c) 128 - 3(x + 4) = 23
d) 71 + (726 - 3x).5 = 2246
e) 720 : [41 - (2x + 5)] = 40
f) (10 - 4x) + 120 : 8 = 16 + 1
g) x + 9x + 7x + 5x = 2244
h) (x + 1) + (x + 2) + (x + 3) +...+ (x + 100) = 5750
i) 1 + 2 + 3 +...+ x = 500500
j) 51 + 52 + 53 +...+ x = 18825
a: Ta có: \(7x+25=144\)
\(\Leftrightarrow7x=119\)
hay x=17
b: Ta có: \(33-12x=9\)
\(\Leftrightarrow12x=24\)
hay x=2
c: Ta có: \(128-3\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=105\)
\(\Leftrightarrow x+4=35\)
hay x=31
d: Ta có: \(71+\left(726-3x\right)\cdot5=2246\)
\(\Leftrightarrow5\left(726-3x\right)=2175\)
\(\Leftrightarrow726-3x=435\)
\(\Leftrightarrow3x=291\)
hay x=97
e: Ta có: \(720:\left[41-\left(2x+5\right)\right]=40\)
\(\Leftrightarrow41-\left(2x+5\right)=18\)
\(\Leftrightarrow2x+5=23\)
\(\Leftrightarrow2x=18\)
hay x=9
f: Ta có: \(10-4x+120:8=16+1\)
\(\Leftrightarrow4x=17-25=-8\)
hay x=-2
g: Ta có: \(x+9x+7x+5x=2244\)
\(\Leftrightarrow22x=2244\)
hay x=102
h: Ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow100x+5050=5750\)
\(\Leftrightarrow100x=700\)
hay x=7