\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
Tính:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(2A=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
mình áp dụng công thức tổng quát:\(\frac{a}{n\left(n+1\right)\left(n+2\right)...\left(n+a\right)}=\frac{1}{n\left(n+1\right)\left(n+a-1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)...\left(n+a\right)}\)
Tính:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\))
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
<=>\(2A=2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\right)\)
<=>\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
<=>\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
<=>\(2A=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n}{2\left(n+1\right)\left(n+2\right)}=\frac{n\left(n+3\right)}{2\left(n+1\right)\left(n+2\right)}\)
<=>\(A=\frac{n\left(n+3\right)}{2\left(n+1\right)\left(n+2\right)}.\frac{1}{2}=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
tổng quát: 1/n(n+1)(n+2)=1/2[1/n(n+1) - 1/(n+1)(n+2)]
Chứng minh đẳng thức sau \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\) với \(n\ge2\)
Với \(k\in N;k>0\) Ta có :
\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\frac{\left(k+2\right)-k}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\right)\)
Áp dụng ta có :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{n\left(n+1\right)-2}{2n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)(đpcm)
Ta có :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{2\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{n\left(n-1\right)+2\left(n-1\right)}{2n\left(n+1\right)}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}=\frac{n^2-n+2n-2}{2n^2+2n}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)}{2n\left(n+1\right)}-\frac{2}{2n\left(n+1\right)}=\frac{n^2+n-2}{2n^2+2n}\)
\(\Leftrightarrow\)\(\frac{n^2+n-2}{2n^2+2n}=\frac{n^2+n-2}{2n^2+2n}\) với \(n\ge2\)
Vậy ...
Tính tổng
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)
Đặt C =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow C=\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\div2\)
Tính :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
Câu hỏi của GT 6916 - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo.
Tính
D=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+......+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(D=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
P/S: tham khảo nhé
đến đây bn làm tiếp nha
chứng minh rằng
\(\frac{2}{n.\left(n+1\right).\left(n+2\right)}=\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
áp dụng tính
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..............+\frac{1}{2015.2016.2017}\)
Ta có \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) (đpcm)
Áp dụng công thức trên ta có
A\(=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot\cdot\cdot\cdot\cdot+\frac{1}{2015\cdot2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2015\cdot2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{2}{3\cdot4}+....+\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\)
\(\Rightarrow A=\left(\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\right)\div2\approx0.25\)
Vậy A\(\approx0.25\)
chứng minh rằng
\(\frac{2}{n.\left(n+1\right).\left(n+2\right)}=\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
áp dụng tính
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.............+\frac{1}{2015.2016.2017}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)
chúng ta hãy quy đồng rồi cộng chúng lại với nhau thì sẽ ra kết quả và cậu hãy xem lai kiến thức mới học của cậu đi