PN

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

H24
15 tháng 7 2018 lúc 16:19

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

   \(\Rightarrow2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

                \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

                \(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

                \(=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

                 \(=\frac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow A=\frac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)

TK nha!!

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
TM
Xem chi tiết
AM
Xem chi tiết