Những câu hỏi liên quan
LG
Xem chi tiết
TQ
Xem chi tiết
NT
15 tháng 1 2024 lúc 19:00

a: Xét ΔABD và ΔBDC có

\(\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}\left(\dfrac{3}{6}=\dfrac{6}{12}=\dfrac{5}{10}\right)\)

Do đó: ΔABD~ΔBDC

b: Ta có: ΔABD~ΔBDC

=>\(\widehat{ABD}=\widehat{BDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC
=>ABCD là hình thang

Bình luận (0)
MN
Xem chi tiết
NT
6 tháng 12 2021 lúc 21:39

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\cdot\left(\overrightarrow{OE}+\overrightarrow{OF}\right)=\overrightarrow{0}\)

Bình luận (1)
TV
Xem chi tiết
TV
14 tháng 2 2022 lúc 18:37

Câu a là BDC nha

Bình luận (0)
DV
Xem chi tiết
TD
19 tháng 9 2016 lúc 20:32

mình mới học lớp 7

Bình luận (0)
NA
Xem chi tiết
NA
20 tháng 7 2021 lúc 8:53

mong mọi người giúp em với ạ!!!!!!!!!!!!!

cảm ơn mọi người rất nhiều

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 1:02

a) Ta có: \(\overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED} \)\( = 4\overrightarrow {EG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} \)

Mà: \(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)

\(\overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GN} \) (do N là trung điểm của CD)

\( \Rightarrow \overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = 4\overrightarrow {EG}  + 2(\overrightarrow {GM}  + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)

b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = \overrightarrow 0 \)

Từ ý a ta suy ra \(\overrightarrow {EA}  = 4\overrightarrow {EG} \)

c) Ta có: \(\overrightarrow {EA}  = 4\overrightarrow {EG}  \Leftrightarrow \overrightarrow {EA}  = 4.(\overrightarrow {EA}  + \overrightarrow {AG} ) \Leftrightarrow  - 3\overrightarrow {EA}  = 4\overrightarrow {AG} \)

\( \Leftrightarrow 3\overrightarrow {AE}  = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG}  = \frac{3}{4}\overrightarrow {AE} \)

Suy ra A, G, E thẳng hàng và \(AG  = \frac{3}{4}AE \) nên G thuộc đoạn AE.

Bình luận (0)
LN
Xem chi tiết
NT
1 tháng 7 2023 lúc 19:21

a: ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC

=>AB^2/AC^2=BH/CH

b: ΔAHB vuông tại H có HD là đường cao

nên BH^2=BD*BA

=>BD=BH^2/BA

ΔAHC vuông tại H có HE là đường cao

nên CH^2=CE*CA

=>CE=CH^2/CA

BD/CE=BH^2/BA:CH^2/CA

\(=\dfrac{BH^2}{BA}\cdot\dfrac{CA}{CH^2}=\left(\dfrac{BA}{CA}\right)^4\cdot\dfrac{CA}{BA}=\left(\dfrac{BA}{CA}\right)^3\)

Bình luận (0)
NB
Xem chi tiết
VH
29 tháng 6 2016 lúc 8:15

A B C D

ta có BC=CD (GT) nên tam giác BCD cân tại C => góc CBD = góc CDB ( hai góc đáy)

mặt khác góc CDB =  góc BDA ( vì DB là tia phân giác góc D)

=> góc BDA = góc CBD ( cùng = góc CDB)

mà hai góc này nằm ở vị trí so le trong nên BC // AD => ABCD là hình thang

Bình luận (0)