cho 3x-2y/4 =2z-4x/3=4y-3z/2
chứng minh x/2 =y/3 =z/4
cho 3x-2y/ 4=2z- 4x/3= 4y-3z/2 Chứng minh rằng x/2=y/3= z/4
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. Chứng minh rằng: x/2 = y/3 = z/4
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Học tốt!
Cho 3x - 2y/4 = 2z - 4x/3 = 4y - 3z/2. Chứng minh rằng: x/2 = y/3 = z/4
Vì \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
\(=\frac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{16+9+4}\)
\(=\frac{0}{16+9+4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. chứng minh : x/2 = y/3 = z/4
Số nào là số lẻ : 2 78 467 1356 13464 368634 4580744 56767533
cho 3x- 2y/4 = 2z - 4x/3 = 4y- 3z/z
chung minh x/2 = y/3 = z/4
Ta có: (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
12x - 8y = 0
<=> {6z - 12x = 0
8y - 6z = 0
x/2 = y/3
<=> {z/4 = x/2
y/3 = z/4
<=> x/2 = y/3 = z/4
Vậy<=> x/2 = y/3 = z/4
cho 3x-2y/4 =2z-4x/3=4y-3z/2. chứng minh x/2=y/3=z/4
Cho (3x-2y)/(4)=(2z-4x)/(3)=(4y-3z)/(2)
Chứng minh (x)/(2)=(y)/(3)=(z)/(4)
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. Chứng minh rằng: x/2 = y/3 = z/4
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}\)
\(=\dfrac{\left(12x-12x\right)+\left(8y-8y\right)+\left(6z-6z\right)}{29}=0\)
\(\Rightarrow\left\{{}\begin{matrix}12x=8y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\6z-12x=0\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\\8y=6z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
(3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2 =
= (12x-8y)/16 = (6z-12x)/9 = (8y-6z)/4 = (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
Học tốt!
Cho \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)
Chứng minh rằng: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
suy ra:
\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)
Vậy
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)