Những câu hỏi liên quan
NL
Xem chi tiết
DH
6 tháng 11 2021 lúc 18:17

a) \(A=6x-x^2-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)

Dấu \(=\)khi \(x-3=0\Leftrightarrow x=3\).

b) \(B=x^2-5x-2=x^2-2.\frac{5}{2}x+\left(\frac{5}{2}\right)^2-\frac{33}{4}=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge-\frac{33}{44}\)

Dấu \(=\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\).

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
YN
6 tháng 11 2021 lúc 20:52

a) \(6x-x^2-11\)

\(=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-[\left(x-3\right)^2+2]\)

Mà: \(\left(x-3\right)^2\ge0\)

\(\Rightarrow-\left(x-3\right)^2\le0\)

\(\Rightarrow-\left(x-3\right)^2-2\le0-2\)

\(\Rightarrow A\le-2\)

Dấu '' = '' xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy giá trị lớn nhất của biểu thức \(6x-x^2-11=-2\) khi \(x=3\)

b) \(x^2-5x-2\)

\(=\left(x^2-2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{33}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\)

Mà: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{33}{4}\ge\frac{-33}{4}\forall x\)

Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

Vậy giá trị nhỏ nhất của biểu thức \(x^2-5x-2=\frac{-33}{4}\)  khi \(x=\frac{5}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
VL
Xem chi tiết
HG
Xem chi tiết
HL
4 tháng 12 2016 lúc 21:41

khai triển hằng đẳng thức số một và 2 bạn ơi 

Bình luận (0)
HK
14 tháng 12 2017 lúc 16:57

a)\(x^2-6x+11\)

\(=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

Dấu "="xảy ra khi x=3

b)\(-x^2+6x-11\)

\(=-\left(x^2-6x+9\right)-2\)

\(=-\left(x-3\right)^2-2\le-2\)

Dấu "=" xảy ra khi x=3

Bình luận (0)
LH
Xem chi tiết
NT
23 tháng 12 2021 lúc 19:12

c: \(=\left(x+1\right)^2+1>0\forall x\)

Bình luận (0)
QA
5 tháng 2 2022 lúc 22:57

Trả lời:

a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của biểu thức bằng 2 khi x = 3

b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTLN của biểu thức bằng - 2 khi x = 3

c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\)  (đpcm)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
SV
6 tháng 11 2016 lúc 22:25

A= 5x-x2= -x2+5x = -(x2-5x+25/4-25/4)= -(x-5/2)2+25/4

vì -(x-5/2)2< hoặc = 0 vs mọi x

nên - (x-5/2)+25/4< hoặc =25/4

dấu bằng xảy ra khi và chỉ khi x-5/2=0

=> x=5/2

câu b tg tự đặt dấu trừ ra ngoài rồi tách 11= 9+2 là ra giá trị lớn nhất của B=-2 tại x=3

Bình luận (0)
NH
Xem chi tiết
OP
3 tháng 8 2016 lúc 9:35

\(4x^2+4x+6\)

\(=\left(2x\right)^2+2.2x.1+1+5\)

\(=\left(2x+1\right)^2+5\ge5\)

\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)

\(x^2+6x+11\)

\(=x^2+2.x.3+9+2\)

\(=\left(x+3\right)^2+2\ge2\)

\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)

\(x^2-3x+1\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)

\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)

Bình luận (0)
NV
3 tháng 8 2016 lúc 9:38

B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7

             Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2 

C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2

              Vậy MinC = 2 khi x + 3 = 0 => x = -3

D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

              Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2

Bình luận (0)
TN
3 tháng 8 2016 lúc 9:40

bài a của  o0o I am a studious person o0o có lẽ sai

\(B=4x^2+4x-6=\left(4x^2+4x+1\right)-7=\left(2x+1\right)^2-7\)

có:\(\left(2x+1\right)^2\ge0\)

vậy GTNN của B = -7 tại x = -1/2

Bình luận (0)
PL
Xem chi tiết
TP
20 tháng 10 2015 lúc 22:30

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

Bình luận (0)
LT
Xem chi tiết
SS
24 tháng 2 2020 lúc 8:54

B= 6x+11/x^2-2x+3

= 9(x^2-2x+3)-9x^2+18x-27+6x+11/ x^2-2x+3

= 9 +

-(3x-4)^2/(x-1)^2+2

Vì (3x-4)^2 > hoặc = 0 với mọi x

=> -(3x-4)^2< hoặc =0

(x-1)^2+2>0 với mọi x

=> -(3x-4)^2/(x-1)^2+2< hoặc=0

=> B< hoặc =9

Vậy GTLN của B=9 khi x=4/3

Làm tương tự ta có gtnn của B=-1/2 khi x=-5

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
SS
24 tháng 2 2020 lúc 20:21

Phần tìm gtnn của B:

Tách 6x+11=

-1(x^2-2x+3)/2

+ x^2/2 -x+3/2 + 6x+1

=> B= -1/2

+ (x^2+10x+25)/2(x^2-2x+3)

=> B> hoặc =-1/2

Vậy GTNN của B=-1/2 khi x=-5

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa