Những câu hỏi liên quan
MS
Xem chi tiết
NM
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

Bình luận (0)
LL
11 tháng 10 2021 lúc 21:14

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

Bình luận (0)
NT
11 tháng 10 2021 lúc 21:16

\(n^3+3n^2+2n\)

\(=n\left(n^2+3n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

Bình luận (0)
TL
Xem chi tiết
AT
20 tháng 1 2016 lúc 21:57

A=n3+n2+2n2+2n

=n2(n+1)+2n(n+1)

=(n+1)(n2+2n)

=n(n+1)(n+2)

Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3

=>n(n+1)(n+2) luôn chia hết cho 3 với mọi 

=>A luôn chia hết cho 3 với mọi số nguyên n.

Bình luận (0)
MM
Xem chi tiết
NT
8 tháng 1 2024 lúc 17:30

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 4 2018 lúc 7:18

Cách 1: Quy nạp

Đặt An = n3 + 3n2 + 5n

+ Ta có: với n = 1

A1 = 1 + 3 + 5 = 9 chia hết 3

+ giả sử với n = k ≥ 1 ta có:

Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)

Ta chứng minh Ak + 1 chia hết 3

Thật vậy, ta có:

Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)

         = k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5

         = (k3 + 3k2 + 5k) + 3k2 + 9k + 9

Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3

Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3

⇒ Ak + 1 ⋮ 3.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 3n2 + 5n

      = n.(n2 + 3n + 5)

      = n.(n2 + 3n + 2 + 3)

      = n.(n2 + 3n + 2) + 3n

      = n.(n + 1)(n + 2) + 3n.

Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)

3n ⋮ 3

⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.

Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*

Bình luận (0)
NL
Xem chi tiết
NL
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

Bình luận (0)
TL
Xem chi tiết
TV
Xem chi tiết
PB
Xem chi tiết
CT
20 tháng 11 2018 lúc 10:34

Cách 1: Chứng minh quy nạp.

Đặt Un = n3 + 11n

+ Với n = 1 ⇒ U1 = 12 chia hết 6

+ giả sử đúng với n = k ≥ 1 ta có:

Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)

Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6

Thật vậy ta có:

Uk+1 = (k + 1)3 + 11(k +1)

         = k3 + 3k2 + 3k + 1 + 11k + 11

         = (k3 + 11k) + 3k2 + 3k + 12

 

         = Uk + 3(k2 + k + 4)

Mà: Uk ⋮ 6 (giả thiết quy nạp)

3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)

⇒ Uk + 1 ⋮ 6.

Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 11n

= n3 – n + 12n

= n(n2 – 1) + 12n

= n(n – 1)(n + 1) + 12n.

Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3

⇒ n(n – 1)(n + 1) ⋮ 6.

Lại có: 12n ⋮ 6

⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.

Bình luận (0)
AN
7 tháng 3 2021 lúc 14:49

n^3+11n chia hết cho 6

n^3+11n=n^3-n+12n

=(n-1)n(n+1)+12n

vậy n^3+11n luôn chia hết cho 6, với mọi n

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
12 tháng 1 2019 lúc 17:42

* Với n =1  ta có 1 3 + 11.1 = 12  chia hết cho 6 đúng.

* Giả sử với n = k thì k 3   + 11 k chia hết cho 6.

* Ta phải chứng minh với n =k+1  thì ( k + 1 ) 3 + 11(k +1) chia hết cho 6.

Thật vậy ta có :

k + 1 3 + 11 k + 1 = k 3 + 3 k 2 + 3 k + 1 + 11 k + 11 = ( k 3 + 11 k ) + 3 k ( k + 1 ) + 12   *

Ta có; k 3 +11k chia hết cho 6 theo bước 2.

k(k+1) là tích 2 số tự  nhiên liên tiếp nên chia hết cho 2  ⇒ 3 k ( k + 1 ) ⋮ 6

Và 12 hiển nhiên chia hết cho 6.

Từ đó suy ra (*) chia hết cho 6 (đpcm).

Bình luận (0)