Những câu hỏi liên quan
NT
Xem chi tiết
1D
Xem chi tiết
LC
Xem chi tiết
NN
16 tháng 10 2020 lúc 21:20

Bài 2 : 

\(x^2+xy-2013x-2014y-2015=0\)

\(\Leftrightarrow x^2+xy-2014x-2014y+x-2014-1=0\)

\(\Leftrightarrow\left(x^2+xy\right)-\left(2014x+2014y\right)+\left(x-2014\right)=1\)

\(\Leftrightarrow x\left(x+y\right)-2014\left(x+y\right)+\left(x-2014\right)=1\)

\(\Leftrightarrow\left(x-2014\right)\left(x+y\right)+\left(x-2014\right)=1\)

\(\Leftrightarrow\left(x-2014\right)\left(x+y+1\right)=1\)

Vì x, y là số nguyên dương \(\Rightarrow\hept{\begin{cases}x-2014\inℤ\\x+y+1\inℤ\end{cases}}\)

\(\Rightarrow\)\(x-2014\)và \(x+y+1\)là ước của 1

Lập bảng giá trị ta có:

\(x-2014\)\(-1\)\(1\)
\(x+y+1\)\(-1\)\(1\)
\(x\)\(2013\)\(2015\)
\(y\)\(-2015\)\(-2015\)

Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn đề bài là \(\left(2013;-2015\right)\)hoặc \(\left(2015;-2015\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NL
23 tháng 3 2021 lúc 22:59

\(\Leftrightarrow2013\left(x^2-2x+1\right)+2014\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow2013\left(x-1\right)^2+2014\left(y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
XO
25 tháng 7 2023 lúc 0:11

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

Bình luận (0)
NT
24 tháng 7 2023 lúc 23:19

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

Bình luận (0)
NT
24 tháng 7 2023 lúc 23:32

Tiếp tục phần tiếp theo

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)

⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
NL
25 tháng 3 2021 lúc 14:41

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

Bình luận (0)