cmr 100-(1+1/2+1/3+...+1/100)=1/2+2/3+...+99/100
CMR 100 - ( 1 + 1/2 + 1/3 + ... + 1/100 ) = 1/2 + 2/3 + ... + 99/100.
cmr
100-(1+1/2+1/3+...+1/100)=1/2+2/3+3/4+....+99/100
\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
CMR
100-(1/2+1/3+1/4+...+1/100)=2/3+3/4+...+99/100
100=10*10
100=1000:10
100 câu nói hay về cuộc sống
CMR:(1+1/2+1/3+1/4+...+1/100)=1/2=2/3+3/4+...+99/100
CMR(1/1*2+1/2*3+1/3*4+1/4*5+...+1/99*100):(1/51+1/52+1/53+...+1/100) = 1
Sửa đề: \(\dfrac{\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
=1
CMR:1/2+1/3+1/4+...+1/100>99/100
Bài 4 :
a,Cho A= 1/2!+1/3!+.....+1/100!
CMR A<1
b, CMR :1-1/2+1/3-1/4+...+1/99-1/100=1/51+1/52+....+1/100
CMR:
a)1/10^2 +1/11^2+1/12^2+...+1/100^2 >3/4
b)1/2^2+1/3^2+1/4^2+...+1/100^2<99/100
c)1/2^2+1/3^2+1/4^2+...+1/100^2<3/4
CMR: 100- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
Ta có:
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100-1-\dfrac{1}{2}-...-\dfrac{1}{100}=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100=1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+...+\dfrac{1}{100}+\dfrac{99}{100}\)
\(\Rightarrow100=1+1+1+...+1\) (\(100\) số \(1\))
\(\Rightarrow100=100\)
Vậy \(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\) (Đpcm)