a , tìm m để phương trình mx=2-x vô nghiệm
b, tìm m để pương trình 2mx-3= 4x có nghiệm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm m để phương trình:
a) x^2 – 2mx + m + 6 = 0 có hai nghiệm phân biệt.
b) mx^2 – 2mx + m + 3 = 0 vô nghiệm.
c) (m – 2)x^2 + (2m – 3)x + m +1 = 0 có nghiệm kép
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
cho pt \(x^4+4x^3+\left(m+4\right)x^2+2mx+2m=0\)
A)Tìm m để phương trình có nghiệm.Từ đó suy ra phương trình vô nghiệm.
B)Tìm m để phương trình có 4 nghiệm phân biệt.
cho phương trình mx^2 + 12 x − 4 = 0
a,giải phương trình với m=1
b,tìm m để phương trình có 2 nghiệm phân biệt
c,tìm m để phương trình có 2 nghiệm kép tìm nghiệm kép đó
d,tìm m để phương trình vô nghiệm
a) Thay \(m=1\) vào phương trình, ta được:
\(x^2+12x-4=0\) \(\Rightarrow\left[{}\begin{matrix}x=-6+2\sqrt{10}\\x=-6-2\sqrt{10}\end{matrix}\right.\)
Vậy ...
b)
+) Với \(m=0\) \(\Rightarrow12x-4=0\) \(\Leftrightarrow x=\dfrac{1}{3}\)
+) Với \(m\ne0\), ta có: \(\Delta'=36+4m\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow m>-9\)
Vậy \(\left\{{}\begin{matrix}m\ne0\\m>-9\end{matrix}\right.\) thì phương trình có 2 nghiệm phân biệt
c) Để phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\) \(\Leftrightarrow m=-9\)
\(\Rightarrow-9x^2+12x-4=0\) \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(m=-9\) thì phương trình có nghiệm kép \(x_1=x_2=\dfrac{2}{3}\)
d) Để phương trình vô nghiệm \(\Leftrightarrow\Delta'< 0\) \(\Leftrightarrow m< -9\)
Vậy \(m< -9\) thì phương trình vô nghiệm
tìm m để phương trình vô nghiệm:
a) 2mx-m=1+x
b)(m+1)x-x-2+m=0
c)2mx-3=4x
Cho phương trình: \(\left(m-4\right)x^2-2mx+m-2=0\)
a, Tìm m để phương trình có nghiệm \(x=\sqrt{3}\)
b, Tìm m để phương trình có 2 nghiệm phân biệt, có nghiệm kép, vô nghiệm.
cho phương trình:
mx - 3 = 2x =2m
1) tìm m để phương trình vô nghiệm, phương trình có nghiệm
2) khi phương trình có nghiệm duy nhất :
a) tìm m nguyên để phương trình có nghiệm nguyên
b) tìm m để phương trình có nghiệm x>0
c) tìm m để phương trình có nghiệm x<0
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)