(3x-4)×(5x+15)=0
Giải các PT sau:
a,(5x-4)(4x+6)=0 b,(3,5x-7)(2,1x-6,3)=0
c,(4x-10)(24+5x)=0 d,(x-3)(2x+1)=0
e,(5x-10)(8-2x)=0 f,(9-3x)(15+3x)=0
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
Cách hiểu 1:[TEX]\frac{44-x}{3}[/TEX]=[TEX]\frac{x-12}{5}[/TEX]
[TEX]\frac{220-5x}{15}[/TEX]=[TEX]\frac{3x-36}{15}[/TEX]
hay 220-5x=3x-36
=220-5x-3x+36=0
=220+36-5x-3x=0
=256-(5x+3x)=0
=256-8x=0
=8x=256
=x=32
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
a.3x-6=0
b.(x+1)(2x+4)=0
c.5x+3=2x+15
\(a,3x-6=0\\ \Leftrightarrow x=2\\ b,\left(x+1\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\\ c,5x+3=2x+15\\ \Leftrightarrow5x-2x=15-3\\ \Leftrightarrow3x=12\\ \Leftrightarrow x=4\)
\(a.3x-6=0 \) \(\Leftrightarrow 3x=6\) \(\Leftrightarrow x=2\)
\(b.(x+1)(2x+4)=0 \)
\(x+1=0\) Hay \(2x+4=0\)
\(x=-1\) Hay \(x=-2\)
\(c.5x+3=2x+15\)
\(\Leftrightarrow 3x=12\)
\(\Leftrightarrow x=4\)
tìm x
( 3x - 15 )(10 - x)<0
( 2x - 8 ) (6 - x )≥0
( 15 - 5x ) ( 2x - 4)<0
tìm x
( 3x - 15 )(10 - x)<0
( 2x - 8 ) (6 - x )≥0
( 15 - 5x ) ( 2x - 4)<0
Câu 1:
(3\(x\) - 15).(10 - \(x\)) < 0
3\(x-15\) = 0 ⇒ 3\(x\) = 15 ⇒ \(x\) = 15 : 3 ⇒ \(x=5\)
10 - \(x\) = 0 ⇒ \(x=10\)
Lập bảng ta có:
\(x\) | 5 10 |
3\(x\) - 15 | - 0 + + |
10 - \(x\) | + + 0 - |
(3\(x\) - 15).(10 - \(x\)) | - 0 + 0 - |
Theo bảng trên ta có: \(x\) < 5 hoặc \(x\) > 10
Vậy \(x\) < 5 hoặc \(x\) > 10
(2\(x\) - 8).(6 - \(x\)) ≥ 0
2\(x\) - 8 = 0 ⇒ 2\(x\) = 8 ⇒ \(x=8:2\) ⇒ \(x=4\)
6 - \(x\) = 0 ⇒ \(x=6\)
Lập bảng ta có:
\(x\) | 4 6 |
2\(x-8\) | - 0 + | + |
6 - \(x\) | + | + 0 - |
(2\(x-8\)).(6 - \(x\)) | - 0 + | - |
Theo bảng trên ta có: 4 ≤ \(x\) ≤ 6
Vậy \(4\le x\le6\)
(15 - 5\(x\)).(2\(x\) - 4) < 0
15 - 5\(x\) = 0 ⇒ 5\(x\) = 15 ⇒ \(x=15:5\) ⇒ \(x\) = 3
2\(x-4\) = 0 ⇒ 2\(x=4\) ⇒ \(x=2\)
Lập bảng ta có:
\(x\) | 2 3 |
15 - 5\(x\) | + | + 0 - |
2\(x-4\) | - 0 + | + |
(15 - 5\(x\)).(2\(x\) - 4) | - 0 + 0 - |
Theo bảng trên ta có: \(x\) < 2 hoặc \(x\) > 3
Vậy \(x\) < 2 hoặc \(x>3\)
16 Tìm x, biết
a) 4(x+2)-7(2x-1)+9(3x-4)=30 ; b) 2(5x-8)-3(4x-5)=4(3x-4)+11
c) 5x(1-2x)-10(x+8)=0 ; d) (5x-3).4x-2x.(10x-3)=15
A. \(4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\)
\(\Leftrightarrow4x+8-14x+7+27x-36=30\)
\(\Leftrightarrow4x-14x+27x=30-8-7+36\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\) . Vậy \(S=\left\{3\right\}\)
B. \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=16-15-16+11\)
\(\Leftrightarrow10x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{5}\) . Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
Câu C) bạn xem lại đề nha mik tính ko đc
D. \(\left(5x-3\right)4x-2x\left(10x-3\right)=15\)
\(\Leftrightarrow20x^2-12x-20x^2+6x=15\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\) . Vậy \(S=\left\{-\dfrac{5}{2}\right\}\)
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
I) giải các pt tích:
1) 3x - 12= 5x(x - 4)
2) 3x - 15= 2x(x - 5)
3) 3x(2x - 3) + 2(2x - 3)= 0
4) (4x - 6) (3 - 3x)= 0
1) Ta có: 3x-12=5x(x-4)
\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3x-12-5x^2+20x=0\)
\(\Leftrightarrow-5x^2+23x-12=0\)
\(\Leftrightarrow-5x^2+20x+3x-12=0\)
\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)
2) Ta có: 3x-15=2x(x-5)
\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)
3) Ta có: 3x(2x-3)+2(2x-3)=0
\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)
4) Ta có: (4x-6)(3-3x)=0
\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)
4) (4x - 6 ) ( 3 - 3x ) = 0
<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)
Bài 1 :
a, Ta có : \(3x-12=5x\left(x-4\right)\)
=> \(3x-12=5x^2-20x\)
=> \(3x-12-5x^2+20x=0\)
=> \(5x^2-23x+12=0\)
=> \(5x^2-20x-3x+12=0\)
=> \(5x\left(x-4\right)-3\left(x-4\right)=0\)
=> \(\left(5x-3\right)\left(x-4\right)=0\)
=> \(\left[{}\begin{matrix}5x-3=0\\x-4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{3}{5}\) và x = 4 .
b, Ta có : \(3x-15=2x\left(x-5\right)\)
=> \(3x-15-2x\left(x-5\right)=0\)
=> \(3\left(x-5\right)-2x\left(x-5\right)=0\)
=> \(\left(3-2x\right)\left(x-5\right)=0\)
=> \(\left[{}\begin{matrix}3-2x=0\\x-5=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{3}{2}\) và x = 5 .
c, Ta có : \(3x\left(2x-3\right)+2\left(2x-3\right)=0\)
=> \(\left(3x+2\right)\left(2x-3\right)=0\)
=> \(\left[{}\begin{matrix}3x+2=0\\2x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=-2\\2x=3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(-\frac{2}{3}\) và x = \(\frac{3}{2}\) .
d, Ta có : \(\left(4x-6\right)\left(3-3x\right)=0\)
=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}4x=6\\-3x=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{6}{4}\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 1 và x = \(\frac{6}{4}\) .