Những câu hỏi liên quan
TH
Xem chi tiết
AH
12 tháng 7 2021 lúc 18:45

Lời giải.

c.

$x^3-3x^2+3x-1=0$

$\Leftrightarrow (x-1)^3=0$

$\Leftrightarrow x-1=0$

$\Leftrightarrow x=1$

Vậy pt có tập nghiệm $S=\left\{1\right\}$

d. ĐKXĐ: $x\neq \frac{-1}{3}; -3$

PT $\Leftrightarrow \frac{(3x-1)(x+3)+(x-3)(3x+1)}{(3x+1)(x+3)}=2$

$\Leftrightarrow \frac{6x^2-6}{3x^2+10x+3}=2$

$\Leftrightarrow 6x^2-6=2(3x^2+10x+3)$

$\Leftrightarrow 20x+12=0$

$\Leftrightarrow x=\frac{-3}{5}$ (tm)

Vậy tập nghiệm của pt là $S=\left\{\frac{-3}{5}\right\}$

 

 

Bình luận (0)
AH
12 tháng 7 2021 lúc 18:54

Bài 2:

a. 

\(\left\{\begin{matrix} 2x-3y=11\\ 5x-4y=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 10x-15y=55\\ 10x-8y=6\end{matrix}\right.\)

\(\Rightarrow (10x-8y)-(10x-15y)=6-55\)

\(\Leftrightarrow 7y=-49\Leftrightarrow y=-7\)

\(x=\frac{3y+11}{2}=\frac{3.(-7)+11}{2}=-5\)

Vậy hpt có nghiệm $(x,y)=(-5,-7)$

b. Không đủ cơ sở để tìm $x,y$

c. 

\(\left\{\begin{matrix} 5x+3y=\lambda\\ -x+\lambda y=-8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 5x+3y=\lambda\\ -5x+5\lambda y=-40\end{matrix}\right.\)

\(\Rightarrow (3+5\lambda)y=\lambda-40\)

Nếu $\lambda = \frac{-3}{5}$ thì $0.y=\frac{-203}{5}$ (vô lý) nên hpt vô nghiệm

Nếu $\lambda \neq \frac{-3}{5}$ thì:

$y=\frac{\lambda - 40}{3+5\lambda}$

$x=8+\lambda y=\frac{\lambda ^2+24}{5\lambda +3}$

Bình luận (2)
TH
Xem chi tiết
NL
2 tháng 8 2021 lúc 17:12

\(\sqrt{20}-\sqrt{45}+\sqrt{6+2\sqrt{5}}=\sqrt{2^2.5}-\sqrt{3^2.5}+\sqrt{\left(\sqrt{5}+1\right)^2}=2\sqrt{5}-3\sqrt{5}+\sqrt{5}+1=1\)

\(\sqrt{20}-2-\sqrt{\left(\sqrt{5}-2\right)^2}=2\sqrt{5}-2-\left|\sqrt{5}-2\right|=2\sqrt{5}-2-\sqrt{5}+2=\sqrt{5}\)

\(\left(\sqrt{27}+3\sqrt{12}-2\sqrt{3}\right):\sqrt{3}=\left(3\sqrt{3}+6\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=7\sqrt{3}:\sqrt{3}=7\)

\(\sqrt{50}-3\sqrt{8}+\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{5^2.2}-3\sqrt{2^2.2}+\sqrt{\left(\sqrt{2}+1\right)^2}=5\sqrt{2}-6\sqrt{2}+\sqrt{2}+1=1\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 20:46

1) \(A=\sqrt{20}-\sqrt{45}+\sqrt{6+2\sqrt{5}}\)

\(=2\sqrt{5}-3\sqrt{5}+\sqrt{5}+1\)

=1

2) Ta có: \(B=\sqrt{20}-2-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=2\sqrt{5}-2-\sqrt{5}+2\)

\(=\sqrt{5}\)

Bình luận (0)
NT
2 tháng 8 2021 lúc 20:51

3) Ta có: \(\left(\sqrt{27}+3\sqrt{12}-2\sqrt{3}\right):\sqrt{3}\)

\(=\left(3\sqrt{3}+6\sqrt{3}-2\sqrt{3}\right):\sqrt{3}\)

=7

4) Ta có: \(\sqrt{50}-3\sqrt{8}+\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(=5\sqrt{2}-6\sqrt{2}+\sqrt{2}+1\)

=1

Bình luận (0)
NA
Xem chi tiết
NL
15 tháng 8 2021 lúc 23:30

1.

a.

ĐKXĐ: \(x^2-1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

\(log_2\left(x^2-1\right)=3\)

\(\Rightarrow x^2-1=8\)

\(\Leftrightarrow x^2=9\)

\(\Rightarrow x=\pm3\) (tm)

b.

ĐKXĐ: \(x>0\)

\(log_3x+log_{\sqrt{3}}x+log_{\dfrac{1}{3}}x=6\)

\(\Leftrightarrow log_3x+2log_3x-log_3x=6\)

\(\Leftrightarrow log_3x=3\)

\(\Rightarrow x=3^3=27\)

Bình luận (0)
NL
15 tháng 8 2021 lúc 23:33

c. ĐKXĐ: \(x>0\)

\(log_{\sqrt{2}}^2x+3log_2x+log_{\dfrac{1}{2}}x=2\)

\(\Leftrightarrow\left(2log_2x\right)^2+3log_2x-log_2x=2\)

\(\Leftrightarrow4log_2^2x+2log_2x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}log_2x=-1\\log_2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\sqrt{2}\end{matrix}\right.\)

 

Bình luận (0)
NL
15 tháng 8 2021 lúc 23:35

d.

ĐKXĐ: \(x>0\)

\(log_{\dfrac{1}{2}}^24x+log_2\dfrac{x^2}{8}=8\)

\(\Leftrightarrow\left(-log_24x\right)^2+log_2x^2-log_28=8\)

\(\Leftrightarrow\left(log_2x+log_24\right)^2+2log_2x-3=8\)


\(\Leftrightarrow\left(log_2x+2\right)^2+2log_2x-11=0\)

\(\Leftrightarrow log_2^2x+6log_2x-7=0\)

\(\Rightarrow\left[{}\begin{matrix}log_2x=1\\log_2x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2^7}\end{matrix}\right.\)

Bình luận (0)
KN
Xem chi tiết
AH
30 tháng 10 2021 lúc 21:11

Bài 1:

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$\Leftrightarrow x^2=4.9=36$

$\Rightarrow x=6$ (do $x>0$)

Bình luận (0)
AH
30 tháng 10 2021 lúc 21:13

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm)

$\sin B=\frac{AC}{BC}=\frac{6}{10}=\frac{3}{5}$

$\Rightarrow \widehat{B}=36,87^0$

$\widehat{C}=90^0-\widehat{B}=90^0-36,87^0=53,13^0$

Bình luận (0)
AH
30 tháng 10 2021 lúc 21:18

Bài 3:

a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4$ (cm)

b.

$\sin B=\frac{AC}{BC}=\frac{4}{5}$

$\Rightarrow \widehat{B}=53,13^0$

$\widehat{C}=90^0-\widehat{B}=36,87^0$

c.

Áp dụng tính chất tia phân giác:

$\frac{BE}{CE}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BE}{BC}=\frac{3}{7}$

$\Rightarrow BE=BC.\frac{3}{7}=\frac{5.3}{7}=\frac{15}{7}$  (cm)

$CE=BC-BE=5-\frac{15}{7}=\frac{20}{7}$ (cm)

Bình luận (0)
TH
Xem chi tiết
L2
Xem chi tiết
DN
Xem chi tiết

hoạt động dân gian ngày tết có ông địa cầm quạt phe phẩy ?

tôm khô ăn với củ gì vào ngày tết

món này ngày tết,năm quả trên mâm,nhà nào cũng có,vào khắc giao thừa

Bình luận (0)
 Khách vãng lai đã xóa
DN
10 tháng 1 2020 lúc 8:00

Hai câu đầu có đc gọi là câu đối không ?

Bình luận (0)
 Khách vãng lai đã xóa

có mà , mình tìm ở nhà mình 

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NT
2 tháng 11 2021 lúc 17:38

2^x.4^12=8^9

Bình luận (0)
 Khách vãng lai đã xóa