Những câu hỏi liên quan
NT
Xem chi tiết
H24
Xem chi tiết
NA
11 tháng 7 2018 lúc 8:54

a) Ta có: \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\Leftrightarrow\left(\sqrt{a+b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b\le a+2\sqrt{ab}+b\)

Điều này luôn đúng với mọi a,b€N, do đó BĐT này đúng, dấu ‘=‘ xảy ra khi a=b=0.

b) Ai giải giúp với :)

Bình luận (0)
HN
Xem chi tiết
VN
29 tháng 7 2016 lúc 1:05

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

Bình luận (0)
H24
Xem chi tiết
H24
19 tháng 12 2021 lúc 20:14

ai giỏi ạ

Bình luận (0)
LH
Xem chi tiết
H24
21 tháng 6 2019 lúc 8:06

BĐT cần cm\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)

\(\Leftrightarrow ac+ad+bc+bd\ge ac+bd+2\sqrt{abcd}\)

\(\Leftrightarrow ad+bc\ge2\sqrt{abcd}\)(luôn đúng)

dấu bằng xảy ra khi ad=bc

Bình luận (0)
VH
Xem chi tiết
TD
20 tháng 5 2019 lúc 11:23

a) Bất đẳng thức đúng khi a = b = 2c

do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)

xảy ra khi n = 1

Thật vậy, ta có :

\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Vậy n nhỏ nhất là 1

b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)

do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)

Bình luận (0)
LY
Xem chi tiết
NL
5 tháng 8 2021 lúc 17:23

\(\left|\sqrt{3}sinx+cosx\right|=2\left|\dfrac{\sqrt{3}}{2}sinxx+\dfrac{1}{2}cosx\right|=2\left|sin\left(x+\dfrac{\pi}{6}\right)\right|\le2\)

Đề bài sai 

Bình luận (0)
DM
Xem chi tiết
H24
Xem chi tiết
AH
19 tháng 12 2021 lúc 20:39

Lời giải:

Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)

\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)

Ta có đpcm.

Bình luận (0)
AH
19 tháng 12 2021 lúc 20:40

Lần sau bạn lưu ý đăng 1 bài 1 lần thôi. Đăng nhiều lần coi như spam và sẽ bị xóa không thương tiếc đấy nhé.

Bình luận (0)