BĐT cần cm\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ad+bc\ge2\sqrt{abcd}\)(luôn đúng)
dấu bằng xảy ra khi ad=bc
BĐT cần cm\(\Leftrightarrow\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ac+ad+bc+bd\ge ac+bd+2\sqrt{abcd}\)
\(\Leftrightarrow ad+bc\ge2\sqrt{abcd}\)(luôn đúng)
dấu bằng xảy ra khi ad=bc
chứng minh bất đẳng thức sau:
a, \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) với a>0,b>0, a khác b
b, \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) ≥ \(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Chứng minh các bất đẳng thức sau:
a. \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
b. \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
Giải giùm mình mấy bài BPT này nha
a) Chứng minh: \(\dfrac{a+b}{2}\le\sqrt{\dfrac{a^2+b^2}{2}}\)
b) Cho a,b>0 chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
c) Cho a+b\(\ge\)0 chứng minh: \(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
d) Chứng minh: \(\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ac}{3}}\) ; \(a,b,c\ge0\)
e) Chứng minh: \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
Bài toán 1. Cho a, b, c là các số thực dương thỏa mãn $latex a+b+c=3$. Chứng minh rằng
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{\text{2}\left( {{a}^{\text{2}}}+{{b}^{2}}+{{c}^{2}} \right)}{3}\ge 5$
Cho a,b,c là 3 cạnh của tam giác
cm :a/ \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{b+c-a}+\sqrt{c+a-b}+\sqrt{a+b-c}\)
b/ \(\left(a+b+c\right)^2\le9bc\) (với a\(\le\) b\(\le\) c)
Chứng minh rằng:
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
d, \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
Chứng minh các bất đẳng thức:
1. Cmr :\(a^4+3\ge4a\)
2. Cmr : \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)
cho a,b,c là 3 số dương thỏa mãn abc=1 chứng minh rằng
\(\frac{1}{a^3\left(b+c\right)}\)+\(\frac{1}{b^3\left(c+a\right)}\)+\(\frac{1}{c^3\left(a+b\right)}\)≥\(\frac{3}{2}\)
Chứng minh bất đẳng thức:
a) \(x^2\:+\:\frac{y^2}{16}\:\ge\) \(\frac{1}{2}xy\)
b) \(\left(m+4\right)^2\:\ge16m\)