Cho 3 số thực dương x, y, z tìm min của (x^2+y^2+z^2) /(xy+2yz+xz)
Cho các số thực dương x,y,z. Tìm Min P=\(\frac{x^2+y^2+z^2}{xy+2yz+xz}\)
Dự đoán điểm rơi y=z=k.x
Áp dụng AM-GM:
\(2ky^2+2kz^2\ge4kyz\)
\(y^2+k^2x^2\ge2kxy\)
\(z^2+k^2x^2\ge2kxz\)
Cộng các BĐT trên theo vế:\(2k^2x^2+\left(2k+1\right)y^2+\left(2k+1\right)z^2\ge2k\left(xy+2yz+xz\right)\)
Giờ ta chỉ việc tìm k sao cho \(2k^2=2k+1\),k >0 \(\Rightarrow k=\dfrac{1+\sqrt{3}}{2}\)
\(\Rightarrow\dfrac{x^2+y^2+z^2}{xy+2yz+xz}\ge\dfrac{2k}{2k^2}=\dfrac{1}{k}=\dfrac{2}{\sqrt{3}+1}=\sqrt{3}-1\)
Dấu = xảy ra khi \(y=z=\dfrac{\sqrt{3}+1}{2}x\)
Cho các số thực dương x,y,z t/m xy+yz+xz=1
Tìm min của \(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)
\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Cho x,y,z là các số thực dương : xy+yz+xz=1. Tìm min của P = ( căn( x2 +1) + căn(y2 +1) + căn(z2 +1))/(x+y+z)
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
Đặng Viết Thái tử đúng rồi còn mẫu không có căn
\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)
cho các số thực x,y,z dương sao cho xy+yz+xz=1
tìm min A =\(10\left(x^2+y^2\right)+z^2\)
\(A=2\left(x^2+y^2\right)+\left(8y^2+\dfrac{1}{2}z^2\right)+\left(8x^2+\dfrac{1}{2}z^2\right)\ge2.2\sqrt{x^2y^2}+2\sqrt{8x^2.\dfrac{1}{2}z^2}+2.\sqrt{8x^2.\dfrac{1}{2}z^2}=4\left(xy+yz+zx\right)=4\)
\(A_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)
cho 3 số thực dương x, y, z
tìm min P=\(\frac{x^3+y^3+z^3}{xy+2yz+zx}\)
cho x,y,z là các số thực dương thỏa mãn x+y+2z=3.Tìm Min của :
P= x2+y2+4z2+\(\frac{xy+2yz+2zx}{x^2y+2y^2z+4z^2x}\)
Cho 3 số dương x.y.z thỏa mãn x+y+z = 1
Tìm B min = \(\frac{3}{xy+xz+yz}+\frac{2}{x^2+y^2+z^2}\)
Cho các số dương x, y, z thõa mãn \(\hept{\begin{cases}x^2+xy+\frac{y^3}{3}=25\\\frac{y^2}{3}+z^2=9\\z^2+xz+x^2=16\end{cases}}\)
tính giá trị của biểu thức \(N=xy+2yz+3xz\)
cho 3 số x,y,z>0 thỏa mãn x^2+y^2+z^2=3.tìm Min xy/z+yz/x+xz/y