Những câu hỏi liên quan
TA
Xem chi tiết
TA
Xem chi tiết
HC
Xem chi tiết
NT
18 tháng 1 2021 lúc 21:51

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(\dfrac{B}{A}=\dfrac{\sqrt{x}}{\sqrt{x}-2}:\dfrac{\sqrt{x}+5}{2\sqrt{x}-4}\)

\(\Leftrightarrow\dfrac{B}{A}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}+5}\)

\(\Leftrightarrow\dfrac{B}{A}=\dfrac{2\sqrt{x}}{\sqrt{x}+5}\)

Để \(\dfrac{B}{A}\) nguyên thì \(2\sqrt{x}⋮\sqrt{x}+5\)

\(\Leftrightarrow2\sqrt{x}+10-10⋮\sqrt{x}+5\)

mà \(2\sqrt{x}+10⋮\sqrt{x}+5\)

nên \(-10⋮\sqrt{x}+5\)

\(\Leftrightarrow\sqrt{x}+5\inƯ\left(-10\right)\)

\(\Leftrightarrow\sqrt{x}+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

\(\Leftrightarrow\sqrt{x}+5\in\left\{5;10\right\}\)(Vì \(\sqrt{x}+5\ge5\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\sqrt{x}\in\left\{0;5\right\}\)

hay \(x\in\left\{0;25\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;25\right\}\)

Vậy: Để \(\dfrac{B}{A}\) nguyên thì \(x\in\left\{0;25\right\}\)

Bình luận (0)
NN
Xem chi tiết
WS
Xem chi tiết
NM
14 tháng 12 2021 lúc 15:11

\(a,ĐK:x\ne1;x\ne-1\\ b,C=\dfrac{x^2+x+x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2x^2+2x+1}{2x^2-2}\\ c,C=-\dfrac{1}{2}\Leftrightarrow2-2x^2=2x^2+2x+1\\ \Leftrightarrow4x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}-1}{4}\\x=\dfrac{-\sqrt{5}-1}{4}\end{matrix}\right.\\ d,C>0\Leftrightarrow2x^2-2>0\left(2x^2+2x+1>0\right)\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Bình luận (1)
TC
Xem chi tiết
NB
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Bình luận (0)
 Khách vãng lai đã xóa
LT
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LP
8 tháng 9 2017 lúc 22:31

 ( a = 3; b =-4; c = 1)

TXĐ : D = R.

Tọa độ đỉnh I (2/3; -1/3).

Trục đối xứng : x = 2/3

Tính biến thiên :

a = 3 > 0 hàm số nghịch biến trên (-∞; 2/3). và đồng biến trên khoảng 2/3 ; +∞)

bảng biến thiên :

x

-∞

2/3

 

+∞

y

+∞

\searrow

-1/3

\nearrow

+∞

Các điểm đặc biệt :

(P) giao trục hoành y = 0 :  3x2 – 4x + 1 = 0 <=> x = 1 v x = ½

(P) giao trục tung : x = 0 => y = 1

Đồ thị :

P/s: Bn tham khảo nhé, mk ko chắc đâu

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NT
23 tháng 1 2022 lúc 21:08

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\)

\(=-\left(m^2-4m+4-4\right)-3=-\left(m-2\right)^2+1\)

Để pt trên có 2 nghiệm x1 ; x2 khi \(0\le-\left(m-2\right)^2+1\le1\)

Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4m^2+2m^2-4m+3=6m^2-4m+4\)

bạn kiểm tra lại đề xem có vấn đề gì ko ? 

Bình luận (0)
NL
23 tháng 1 2022 lúc 21:10

\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\ge0\Rightarrow1\le m\le3\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2+x_1x_2\)

\(=\left(2m\right)^2+2m^2-4m+3\)

\(=6m^2-4m+3\)

Xét hàm \(f\left(m\right)=6m^2-4m+3\) trên \(\left[1;3\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}< 1;a=6>0\Rightarrow f\left(m\right)\) đồng biến trên \(\left[1;3\right]\)

\(\Rightarrow f\left(m\right)_{max}=f\left(3\right)=45\) khi \(m=3\)

Bình luận (0)