Những câu hỏi liên quan
TT
Xem chi tiết
TN
Xem chi tiết
NA
Xem chi tiết
GV
6 tháng 12 2017 lúc 10:17

Giả sử hai đa thức có nghiệm chung \(x_0\), ta thấy cả hai đa thức đều không nhận x = 0 là nghiêm nên \(x_0\ne0\) .

Ta có đồng thời:

   \(\hept{\begin{cases}x_0^4+ax_0^2+1=0\\x_0^3+ax+1=0\end{cases}}\)

Nhân cả hai vế của đẳng thức thứ hai với \(x_0\) rồi lấy đẳng thức thứ nhất trừ đi đẳng thức thứ hai ta được:

\(\left(x_0^4+ax_0^2+1\right)-x_0\left(x_0^3+ax_0+1\right)=0\)

=> \(1-x_0=0\)

=> \(x_0=1\)

Thức là nếu hai đa thức có nghiệm chung \(x_0\) thì nghiệm chung đó chỉ có thể bằng 1.

Để  x=1 là nghiệm chung của hai đa thức thì: \(1^4+a.1^2+1=0\) => a = -2

Bình luận (0)
VQ
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
UK
2 tháng 3 2019 lúc 18:06

Ta có:\(\begin{Bmatrix} x^{4}+ax^{2}+1=0 & \\x^{3}+ax+1=0 & \end{Bmatrix}\)

Giả sử phương trình có nghiệm chung là \(x_o\)

\(\begin{Bmatrix} x_0^{4}+ax_0^{2}+1=0(1) & \\x_0^{3}+ax_0 +1=0(2) & \end{Bmatrix}\)

Suy ra

\(x_0^{4}-x_0^{3}+ax_0^{2}-ax_0=0\Leftrightarrow x_0(x_0-1)(x_0^{2}+a)=0\Leftrightarrow \begin{bmatrix} x_0=0 & & \\x_0=1 & & \\x_0^2+a=0 & & \end{bmatrix}\)Thử lại thấy a=-2 phương trình sẽ có 1 nghiệm chung x=1

Bình luận (0)
NL
2 tháng 3 2019 lúc 18:17

Giả sử nghiệm chung của hai đa thức là \(x_0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0^4+ax_0^2+1=0\\x_0^3+ax_0+1=0\end{matrix}\right.\) \(\Rightarrow x_0^4+ax_0^2+1=x_0^3+ax_0+1\)

\(\Rightarrow x_0^4-x_0^3+ax^2_0-ax_0=0\Leftrightarrow x_0^3\left(x_0-1\right)+ax_0\left(x_0-1\right)=0\)

\(\Leftrightarrow x_0\left(x_0-1\right)\left(x_0^2+a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=1\\x^2_0=-a\end{matrix}\right.\)

- Thay \(x_0=0\) vào ta được \(P\left(0\right)=1\Rightarrow\) ko phải nghiệm (loại)

- Thay \(x_0=1\) vào \(\left\{{}\begin{matrix}P\left(1\right)=a+2=0\Rightarrow a=-2\\Q\left(1\right)=a+2=0\Rightarrow a=-2\end{matrix}\right.\) (nhận)

- Với \(x_0^2=-a\Rightarrow a=-x^2_0\) thay vào ta được:

\(\left\{{}\begin{matrix}P\left(x_0\right)=x_0^4+\left(-x_0^2\right)x_0^2+1=1\ne0\\Q\left(x_0\right)=x_0^3+\left(-x_0^2\right)x_0+1=1\ne0\end{matrix}\right.\) (loại)

Vậy với \(a=-2\) thì 2 đa thức có nghiệm chung \(x=1\)

Bình luận (1)
EC
2 tháng 3 2019 lúc 19:41

x=1

Bình luận (0)
HD
Xem chi tiết
NH
14 tháng 8 2017 lúc 20:16

1. Thay x = -2 vào \(f\left(x\right)\), ta có:

\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0

=> -8 + 8 - 2a + 1 = 0

=> -2a +1 = 0

=> -2a = -1

=> a = \(\frac{1}{2}\)

Vậy a = \(\frac{1}{2}\)

2. * Thay x = 1 vào \(f\left(x\right)\), ta có:

1+ 1.a + b = 1 + a + b = 0    ( 1)

* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:

22 + 2.a + b =  4 + 2a + b =  0  ( 2)

* Lấy    (2 )   -   ( 1)  , ta có:

 ( 4 + 2a + b ) - ( 1 + a + b ) = 3  + a 

=> 3 + a = 0

=> a = -3

* 1 + a + b = 0 

=> 1 - 3 + b = 0

=> b = -1 + 3 = -2

Vậy a= -3  và b= -2

Bình luận (0)
NH
8 tháng 4 2019 lúc 20:17

a = -3

b = -2

Hok tốt

Bình luận (0)
TT
Xem chi tiết
IY
15 tháng 6 2018 lúc 17:54

a) ta có: x=2 là nghiệm của A(x)

=> A(2) = 22 + a.2 + b =0

             => 4 + a.2 + b  =0

             => b = -4 - a.2

ta có: x = 3 là nghiệm của A(x)

=> A(3) = 32 +a.3 + b = 0

             => 9+ a.3 + b = 0

thay số:  9+ a.3 - 4-2.a = 0

            ( 9-4) + (a.3-2.a) = 0

                5 + a = 0

=> a = -5

mà b = 4-a.2 = 4 - (-5).2 = 4 + 10 = 14

=> b = 14

KL: a = -5; b= 14

phần b bn lm tương tự nha!

Bình luận (0)
LT
Xem chi tiết