Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
TV
21 tháng 9 2016 lúc 21:05

25361

Bình luận (0)
DV
Xem chi tiết
NL
16 tháng 3 2019 lúc 22:58

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

Bình luận (0)
BT
Xem chi tiết
PO
Xem chi tiết
GD
30 tháng 11 2019 lúc 20:40

Theo t/c tỉ lệ thức ta có :

\(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) (1)

Mặt khác : \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) (2)

Từ (1) và (2) => \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) (3)

Tương tự :

\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\) (4)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\) (5)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\) (6)

Cộng vế với vế của (3),(4),(5),(6), ta có :

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
KN
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Bình luận (0)
 Khách vãng lai đã xóa
PQ
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Bình luận (0)
 Khách vãng lai đã xóa
PQ
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Bình luận (0)
 Khách vãng lai đã xóa
UI
Xem chi tiết
TH
Xem chi tiết
VT
29 tháng 11 2019 lúc 18:41

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
TH
29 tháng 11 2019 lúc 18:30

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

Bình luận (0)
 Khách vãng lai đã xóa
AH
29 tháng 11 2019 lúc 19:00

Bài 2:

CM vế thứ nhất:

Với $a,b,c,d>0$:

\(\left\{\begin{matrix} \frac{a}{a+b+c}>\frac{a}{a+b+c+d}\\ \frac{b}{b+c+d}>\frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}>\frac{c}{a+b+c+d}\\ \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\end{matrix}\right.\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)

CM vế thứ 2:

Xét hiệu \(\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{a(a+b+c+d)-(a+d)(a+b+c)}{(a+b+c)(a+b+c+d)}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0\) với mọi $a,b,c,d>0$

\(\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Hoàn toàn tương tự:

\(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}; \frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}; \frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}\)

Cộng theo vế:

\(\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2\)

Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
UI
Xem chi tiết
LH
Xem chi tiết