Những câu hỏi liên quan
H24
Xem chi tiết
KL
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Bình luận (0)
DM
Xem chi tiết
VA
Xem chi tiết
MH
1 tháng 9 2021 lúc 9:43

a)A=4(x+11/8)^2 -153/16

Min A=-153/16 khi x=-11/8

b)B=3(x-1/3)^2 -4/3

Min B=-4/3 khi x=1/3

Bình luận (0)
LL
1 tháng 9 2021 lúc 9:44

Bài 1:

a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)

\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)

b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)

Bài 2:

a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)

\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)

b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)

\(maxB=11\Leftrightarrow x=-2\)

Bình luận (2)
NT
1 tháng 9 2021 lúc 14:51

Bài 1: 

a: Ta có: \(A=4x^2+11x-2\)

\(=4\left(x^2+\dfrac{11}{4}x-\dfrac{1}{2}\right)\)

\(=4\left(x^2+2\cdot x\cdot\dfrac{11}{8}+\dfrac{121}{64}-\dfrac{153}{64}\right)\)

\(=4\left(x+\dfrac{11}{8}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{11}{8}\)

b: Ta có: \(B=3x^2-2x-1\)

\(=3\left(x^2-\dfrac{2}{3}x-\dfrac{1}{3}\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{4}{9}\right)\)

\(=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

Bình luận (0)
SA
Xem chi tiết
XM
Xem chi tiết
MD
6 tháng 6 2016 lúc 17:42

Bạn xem lại bài 1 đi:Đề phải là tìm GTLN chứ

2a:

Ta có:\(a^2+b^2+c^2=ab+ac+bc\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Vì \(\left(a-b\right)^2;\left(a-c\right)^2;\left(b-c\right)^2\ge0\) nên \(\left(a-b\right)^2=\left(a-c\right)^2=\left(b-c\right)^2=0\Leftrightarrow a=b=c\)

Bình luận (0)
CL
13 tháng 6 2016 lúc 19:27

1b.
x^2 - x - 8
= [x^2 - 2.x.7/2 + (7/2)^2 ] - 17/4 
=(x- 7/2)^2 - 17/4 
vì (x- 7/2)^2 > hoặc = 0 
=> (x- 7/2)^2 - 17/4 > hoặc = -17/4 
dấu = xảy ra khi (x- 7/2)^2 = 0
=> x = 7/2 
vậy GTNN P(x) = -17/4 khi x = 7/2 

Bình luận (0)
CL
13 tháng 6 2016 lúc 19:39

2b. 
ta có: 
 B = I x - 4 I . (2 . I x - 4 I ) 
    = 2.I x-4 I - I x -4 I^2 
    = - I x -4 I - 2.I x - 4 I.1 + 1^2 
    = (- I x - 4 I + 1 )^2 +1 < hoặc = 1 
   dấu =  xảy ra khi ( I x - 4 I - 1 )^2 = 0 
                              I x - 4 I = 1
                              x - 4 =1 hoặc x - 4 = -1 
                               x = 5 hoặc x = 3 
         vậy GTLN B = 1 khi x = 5 hoặc x = 3 
mình không bít đúng hay sai nha!!! :) 

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Bình luận (0)
CP
Xem chi tiết
KN
28 tháng 8 2020 lúc 11:31

2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)

\(=2\left(x-2\right)^2-18\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy minA = - 18 <=> x = 2

b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy maxB = 27/4 <=> x = 3/2

Bình luận (0)
 Khách vãng lai đã xóa
H24
28 tháng 8 2020 lúc 11:45

Sửa đề:x3-3x2-4x+12

a,x3-3x2-4x+12

=(x3-3x2)-(4x+12)

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

b,x4- 5x2 +4

x4-4x2-x2+4

(x4-x2)-(4x2+4)

x2(x2-1)-4(x2-1)

(x2-4)(x2-1)

  

Bình luận (0)
 Khách vãng lai đã xóa
LD
28 tháng 8 2020 lúc 11:53

Bài 1.

a) x3 - 3x2 - 4x + 12 ( mạn phép sửa 13 thành 12, chứ để 13 là không phân tích được :> )

= x2( x - 3 ) - 4( x - 3 )

= ( x - 3 )( x2 - 4 )

= ( x - 3 )( x - 2 )( x + 2 )

b) x4 - 5x2 + 4

Đặt t = x2

Đa thức <=> t2 - 5t + 4

= t2 - t - 4t + 4

= t( t - 1 ) - 4( t - 1 )

= ( t - 1 )( t - 4 )

= ( x2 - 1 )( x2 - 4 )

= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )

c) ( x + y + z )3 - x3 - y3 - z3

= ( x + y + z )3 - ( x3 + y3 + z3 )

= ( x + y + z )3 - [ ( x + y + z )3 - 3( x + y )( y + z )( z + x ) ] ( chỗ này bạn xem HĐT tổng ba lập phương nhé )

= ( x + y + z )3 - ( x + y + z )3 + 3( x + y )( y + z )( z + x )

= 3( x + y )( y + z )( z + x )

d) 45 + x3 - 5x2 - 9x 

= ( x3 - 5x2 ) - ( 9x - 45 )

= x2( x - 5 ) - 9( x - 5 )

= ( x - 5 )( x2 - 9 )

= ( x - 5 )( x - 3 )( x + 3 )

e) x4 - 2x3 + 3x2 - 2x - 3 ( sửa -3x3 -> 3x2 )

= x4 - x3 - x3 + 3x2 - x2 + x2 - 3x + x - 3

= ( x4 - x3 + 3x2 ) - ( x3 - x2 + 3x ) - ( x2 - x + 3 )

= x2( x2 - x + 3 ) - x( x2 - x + 3 ) - 1( x2 - x + 3 )

= ( x2 - x - 1 )( x2 - x + 3 )

Bài 2.

A = 2x2 - 8x - 10

= 2( x2 - 4x + 4 ) - 18

= 2( x - 2 )2 - 18 

2( x - 2 )2 ≥ 0 ∀ x => 2( x - 2 )2 - 18 ≥ -18

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MinA = -18 <=> x = 2

B = 9x - 3x2

= -3( x2 - 3x + 9/4 ) + 27/4

= -3( x - 3/2 )2 + 27/4

-3( x - 3/2 )2 ≤ 0 ∀ x => -3( x - 3/2 )2 + 27/4 ≤ 27/4

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MaxB = 27/4 <=> x = 3/2

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết