Chứng minh
75.(x^2004+x^2003+...+x)+25 chia hết cho 100
Chứng minh: \(75.\left(4^{2004}+4^{2003}+4^{2002}+...+4^2+4+1\right)+25\) chia hết cho 100
dat A=75*(4^2004+4^2003+...+4^2+4+1)+25
B=4^2004+4^2003+...+4^2+4+1
4B=4+4^2+4^3+...+4^2005
3B=4^2005-1
B=(4^2005-1)/3
A=75*(4^2005-1)/3+25
A=25*(4^2005-1)+25
A=25*4*4^2004-25+25
A=100*4^2004
Vay A chia het cho 100
k cho minh nhieu nha
Có : Gọi B=4^2004+4^2003+...+4^2+4+1
4B = 4^2005+4^2004+...+4^2+4
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1)
=> 3B = 4^2005 - 1
=> B = (4^2005 - 1)/3
=> A = 75.(4^2004+4^2003+...+4^2+4^1+1)+25
=> A= 75.(4^2005-1)/3+25
=75/3.(4^2005)-1+25
= 25 (4^2005 -1) +25
= 25 x 4 ^ 2005
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004
=>100 x4 ^ 2004 chia hết cho 100=>a chia hết cho 100
Cho biểu thức A=75.(4^2004+4^2003+.....+4^+4+1)+25. Chứng minh rằng Achia hết cho 100
Chứng minh rằng A chia hết cho 100, biết
A = 75 ( 42004 + 42003 + ... + 42 + 4 + 1 ) + 25
\(A=75\left(4^{2004}+...+4+1\right)+25\)
\(=25\left(4-1\right)\left(4^{2004}+...+4+1\right)+25\)
\(=25\left[4\left(4^{2004}+...+4+1\right)-\left(4^{2004}+...+4+1\right)\right]+25\)
\(=25\left[\left(4+4^2+...+4^{2005}\right)-\left(1+4+...+4^{2004}\right)\right]+25\)
\(=25\left(4^{2005}-1\right)+25\)
\(=25.4^{2005}-25+25\)
\(=100.4^{2004}⋮100\)
Tính A= 1/101.200 + 1/102.199 + 1/103.198 +......+ 1/200.101
B=(-7) +(-7)^2 + (-7)^3 +.........+ (-7)^2007 chứng minh B chia hết cho 43
chứng minh C= 75 . (4^2004 + 4^2003 + ........+ 4^2 + 4 + 1)+25 là số chia hết cho 100
giúp minh cau nay vs nhé
A= 75. (4^2004 + 4^2003 +...+4^2 +4+1)+25 là số chia hết cho 100
Đặt B = 42004 + 42003 + 42002 + 42001 + ... + 42 + 4 + 1 (có 2005 số; 2005 : 2 dư 1)
B = (42004 + 42003) + (42002 + 42001) + ... + (42 + 4) + 1
B = 42003.(4 + 1) + 42001.(4 + 1) + ... + 4.(4 + 1) + 1
B = 42003.5 + 42001.5 + ... + 4.5 + 1
B = 5.(42003 + 42001 + ... + 4) + 1
=> B = 5 x k + 1 ( k thuộc N*; k chia hết cho 4)
=> A = 75 x (5 x k + 1) + 25
=> A = 75 x 5 x k + 75 + 25
=> A = ...00 + 100
=> A = ..00 chia hết cho 100
giúp minh cau nay vs nhé
A= 75. (4^2004 + 4^2003 +...+4^2 +4+1)+25 là số chia hết cho 100
A = 75.4^2004 + ... + 75.4 + 75 + 25
= 25.3.4^2004 + ... + 25.3.4 + 100
= 100.3.4^2003 + ... + 100.3 + 100
=> A chia hết cho 100
giúp minh cau nay vs nhé
A= 75. (4^2004 + 4^2003 +...+4^2 +4+1)+25 là số chia hết cho 100
\(A=75\left(4^{2004}+4^{2003}+....+4+1\right)+25\)
\(\Rightarrow A=75.4^{2004}+75.4^{2003}+....+75.4+75.1+25\)
\(\Rightarrow A=\left(75.4\right).4^{2003}+....+300+100\)
\(\Rightarrow A=300.4^{2003}+.....+300+100\) chia hết cho 100
=> ĐPCM
B=4^2004+4^2003+...+4^2+4+1
Xét 4B = 4^2005+4^2004+...+4^2+4
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1)
=> 3B = 4^2005 - 1 => B = (4^2005 - 1)/3
=> A = 75 (4^2005 - 1)/3 +25
= 25 (4^2005 -1) +25
= 25 x 4 ^ 2005
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004
Chứng tỏ : A=75.(42004+42003+.......+42+4+1)+25 chia hết cho 100
Chứng tỏ rằng: A=75×(42004+42003+...+42+4+1)+25
là số chia hết cho 100