giải pt sau (x^2+x+1)(x^4+2x^3+7x^2+26x+37)=5(x-3)^2 toán 8
Giải phương trình:
\(\left(x^2+x+1\right)\left(x^4+2x^3+7x^2+26x+37\right)=5\left(x+3\right)^3\)
\(x^4+2x^3+7x^2+26x+37=\left(x^4+2x^3+2x^2+2x+x^2+1\right)+\left(4x^2+24x+36\right)\)
\(=\left(x^2+x+1\right)^2+4\left(x+3\right)^2\)
Đặt: \(x^2+x+1=A;x+3=B\)
\(A\left(A^2+4.B^2\right)=5B^3\Leftrightarrow\left(A^3+5A.B^2\right)-\left(A.B^2+5B^3\right)=0\)
\(\Leftrightarrow\left(A-B^2\right)\left(A^2+5B^2\right)=0\). Em làm tiếp nhé!
Vẫn chưa hiểu phân tích của cô Chi)):
Ta có: \(x^4+2x^3+7x^2+26x+37=\left(x^4+2x^3+2x^2+x^2+2x+1\right)\)
\(+\left(4x^2+24x+36\right)=\left(x^2+x+1\right)^2+4\left(x+3\right)^2\)
Đặt \(x^2+x+1=u;x+3=v\)
Phương trình trở thành \(u\left(u^2+4v^2\right)=5v^3\)
\(\Leftrightarrow u^3+4uv^2=5v^3\)
\(\Leftrightarrow\left(u^3-v^3\right)+\left(4uv^2-4v^3\right)=0\)
\(\Leftrightarrow\left(u-v\right)\left(u^2+uv+v^2\right)+4v^2\left(u-v\right)=0\)
\(\Leftrightarrow\left(u-v\right)\left(u^2+uv+5v^2\right)=0\)
+) \(u-v=0\Rightarrow u=v\)
\(\Rightarrow x^2+x+1=x+3\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
+) \(u^2+uv+5v^2=0\)(vô nghiệm)
Vậy \(x=\pm\sqrt{2}\)
Cô chưa hiểu ý em! Em muốn phân tích: \(u^2+uv+5v^2=0\) vô nghiệm ???
\(u^2+uv+5v^2=0\Leftrightarrow u^2+2u\frac{v}{2}+\frac{v^2}{4}-\frac{v^2}{4}+5v^2=0\Leftrightarrow\left(u+\frac{v}{2}\right)^2+\frac{19}{4}v^2=0\)
<=> \(\hept{\begin{cases}u+\frac{v}{2}=0\\v=0\end{cases}}\Leftrightarrow u=v=0\)
u = 0 <=> \(x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\)vô lí.
Vậy \(u^2+uv+5v^2=0\)vô nghiệm.
14, giải các PT sau.
1, 4-(x-5)=5(x-3x)
2, 32-4(0,5y-5)=3y+2
3, 19-2(x+11)=5(2x-3)-4(5x-7)
4, 4(x+3)-7x+17=8(5x-1)+166
5, 17-14(x+1)=13-4(x+1)-5(x-3)
6, 5(x+10)2+2x=5x2-3
7, (2x-1)2+5=(2x+3)(2x-3)-x
8, 3(x-2)2+2(x+3)(x-3)=5(x+1)2
Giải các pt sau quy về pt bậc hai:
a/(x-6)(x-2)(x+1)(x+3)=7x2
b/4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
c/\(x^4+x^3-10x^2+x+1=0\)
d/\(x^4-10x^3+26x^2-10x+1=0\)
14, giải các PT sau.
1, 4-(x-5)=5(x-3x)
2, 32-4(0,5y-5)=3y+2
3, 19-2(x+11)=5(2x-3)-4(5x-7)
4, 4(x+3)-7x+17=8(5x-1)+166
5, 17-14(x+1)=13-4(x+1)-5(x-3)
6, 5(x+10)2+2x=5x2-3
7, (2x-1)2+5=(2x+3)(2x-3)-x
8, 3(x-2)2+2(x+3)(x-3)=5(x+1)2
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Giải pt sau :
a) 2x-5/6 + x-1/4 = 9/8-x
b) 5x = 14-2x
c) x^3 - 7x^2 = -6
d) x+1/99 + x+3/98 + x+18/87 + x+17/83 + 4 = 0
e) 8^2 + (x+2)^2 = (22-2x)^2
f) 2/x^2-x+1 = 1/x+1 + 2x-1/x^2+1
g) x-2/x+2 - 3/x-2 = 2.(11-x)/4-x^2
h) x-3/x-2 + 1 = 2-x/x-4
i) 3x^2-2x+1/x^2-4 - 7x/x+2 = 1-6x/x-2 + 2
w) 3x.(x^2+4-4x) = 2x-4
giải các PT sau:
(x^2+x-5)(x^2+x+4)=-18
x^3-7x+6=0
(3x^2+10-8)^2=(5x^2-2x+10)^2
a)
Đặt x^2 + x - 5 = t.
Khi đó, pt đã cho trở thành :
t ( t + 9 ) = -18
<=> t^2 + 9t + 18 = 0
<=> ( t + 3 )( t + 6 ) = 0
Giải pt trên, ta được t = -3 và t = -6 là các nghiệm của pt.
+) t = -3 => x^2 + x - 5 = -3
<=> x^2 + x - 2 = 0
<=> ( x + 2 )( x - 1 ) = 0
Giải pt trên, ta được x = -2 ; x = 1 là các nghiệm của pt.
+) t = -6 => x^2 + x - 5 = -6
<=> x^2 + x + 1 = 0
<=> ( x + 1/2 )^2 + 3/4 = 0
=> Pt trên vô nghiệm.
Vậy..........
b)
x^3 - 7x + 6 = 0
<=> ( x^3 + 3x^2 ) - ( 3x^2 + 9x ) + ( 2x + 6 ) = 0
<=> x^2 . ( x + 3 ) - 3x . ( x + 3 ) + 2( x + 3 ) = 0
<=> ( x + 3 ) ( x^2 - 3x + 2 ) = 0
<=> ( x+ 3 )( x - 2 )( x - 1 ) = 0
Giải pt trên, ta được x = -3 ; x= 2 ; x= 1 là các nghiệm của pt.
Vậy..........
c)
( 3x^2 + 10x - 8 )^2 = ( 5x^2 - 2x + 10 )^2
<=> ( 3x^2 + 10x - 8 )^2 - ( 5x^2 - 2x + 10 )^2 = 0
<=> ( 3x^2 + 10x - 8 - 5x^2 + 2x - 10 )( 3x^2 + 10x - 8 + 5x^2 - 2x + 10 ) = 0
<=> ( -2x^2 + 12x - 18 )( 8x^2 + 8x + 2 ) = 0
<=> ( x^2 - 6x + 9 )( 4x^2 + 4x + 1 ) = 0
<=> ( x - 3 )^2 . ( 2x + 1 )^2 = 0.
Giải pt trên, ta được x = 3 và x = -1/2 là các nghiệm của pt.
Vậy..........
Giair phương trình nghiệm nguyên:
\(^{x^2y^2-x^2-8y^2=2xy}\)
\(\left(x^2+x+1\right)\left(x^4+2x^3+7x^2+26x+37\right)=5\left(x+3\right)^3\)
giúp mk trog hôm nay nha!!!!!!!
Thanks trc
Giải pt:
\(x^{10}-x^6+x^2-2x+5=0\)
\(7x^8-x^5+x^2-x+3=0\)