cho các số thực a,b,c,d,e
chứng minh rằng: a2 + b2 + c2 + d2 + e2 >= a(b+c+d+e)
Chứng minh rằng: a2+b2+c2+d2+e2≥a(b+c+d+e).
Refer:
a² + b² + c² + d² + e² ≥ a(b + c + d + e)
Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)
Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab
Tương tự ta có:. a²/4 + c² ≥ ac.
a²/4 + d² ≥ ad.
a²/4 + e² ≥ ae
--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae
<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)
=> đpcm.
Dấu " = " xảy ra <=> a/2 = b = c = d = e.
CMR a2+b2+c2+d2+e2≥a(b+c+d+e)
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2
Cho tỉ lệ thức :a/b=c/d
Chứng minh rằng:(a+b)2/(c+d)2=a2 +b2/c2+d2
Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường
\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)
Cho 4 số tự nhiên khác 0 thỏa mãn: a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Ta có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+a^2+b^2=a^2+b^2+c^2+d^2\)
\(\Rightarrow2\left(a^2+b^2\right)=a^2+b^2+c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2\) là chẵn
Xét hiệu: \(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Mà tích 2 số TN liên tiếp là chẵn
⇒ Tổng a+b+c+d là chẵn
Vì \(a+b+c+d>2\) với mọi số TN a,b,c,d khác 0
⇒ a+b+c+d là hợp số
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
cho dãy tỉ số a/b = c/d. Chứng minh a2+c2/b2+d2 =ac/bd sos
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
Cho các số thực a, b, c, d thỏa điều kiện a2 + b2 + c2 + d2 = 2017. Tìm giá trị nghỏ nhất của biểu thức P = (45 + a)(45 + b) - cd
gọi S là diện tích tứ giác ABCD có độ dài các cạnh là a,b,c,d .
Chứng minh rằng : S ≤( a2+b2+c2+d2 )/4
Cho a,b,c,d thuộc Z.Thỏa mãn a+b=c+d.Mà a2+b2=c2+d2.Chứng minh a^2017+b^2017=c^2017+d^2017